リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies of open quantum systems with applications to dissipative barrier transmission in heavy-ion fusion reactions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies of open quantum systems with applications to dissipative barrier transmission in heavy-ion fusion reactions

Tokieda Masaaki 東北大学

2021.03.25

概要

Studies of open quantum systems have attracted attentions in various fields of science, and we have seen great progress in recent years. In this thesis, we apply ideas of open quantum systems to heavy-ion fusion reactions. For theoretical description of heavy-ion fusion reactions, two different models have been used depending on the incident energy. At energies above the Coulomb barrier, importance of energy dissipation and fluctuation due to complex internal excitations has been deduced from scattering experiments. To describe them phenomenologically, the classical Langevin equation has successfully been applied to various kinds of damped nuclear collisions including fusion reactions. Whereas, it cannot be applied to fusion reactions at energies below the Coulomb barrier because fusion reactions take place thorough quantum tunneling. In that energy range, the quantum coupled-channels method with a few number of internal states has been applied, and it has succeeded in explaining sub-barrier fusion reactions. While each method succeeds in each energy range, a unified description of heavy-ion fusion reactions from sub-barrier energies to above barrier energies is beyond the reach of the current models. To achieve this, we need to incorporate dissipation and fluctuation into the formalism of quantum mechanics. It is a subject of open quantum systems, and we propose to regard heavy-ion fusion reactions as an example of open quantum systems to construct a unified model.

In this thesis, we first review the historical backgrounds in more details. Then we introduce a widely used model Hamiltonian to simulate open quantum systems, called the Caldeira-Leggett model. In this model, environment is assumed to be a collection of harmonic oscillators. As an important property relevant to our purpose, we show that it leads to the Langevin equation in the classical limit. Using this model, we deal with the following two problems in this thesis.

The first is developing a new numerical method for the model Hamiltonian. This refers to the studies of open quantum systems in the title. Following advancement of methodology in the past couple of years, we introduce a new method based on phonon number representation of a harmonic oscillator bath. To test this method, we apply it to a damped harmonic oscillator, for which the exact solution can be found easily. Through this study, we confirm the applicability of the method and show that the method can unravel how much the bath is excited in the course of the time evolution. We also find nontrivial new boson operators for a harmonic oscillator bath. Using them, we present a new perspective of the model based on relevant degrees of freedom.

The second issue is an application of the model to barrier transmission problems, including simple calculations of fusion reactions. This refers to the applications to dissi- pative barrier transmission in heavy-ion fusion reactions in the title. The aforementioned method enables one to solve scattering problems with the dissipative coupling. Taking its advantage, we consider quantum barrier transmission problems in the presence of dissipa- tion and fluctuation. To gain an insight, we first consider scattering in a one-dimensional space and explore effects of a frictional force and a random force on the transmission dy- namics. We then apply the model to a fusion problem. With the surface friction model, which has been widely used in the analysis based on the classical Langevin equation, we find suppression of fusion cross sections at sub-barrier energies and at above barrier energies. We investigate mechanisms leading to the suppression in the respective energy ranges and find out importance of dissipation during the tunneling. Based on the calcu- lation results, we discuss the need for microscopic treatments of internal excitations to achieve a unified description of fusion reactions.

参考文献

[1] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancaˇl, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature 446, 782 (2007).

[2] J. McFadden and J. Al-Khalili, Proc. R. Soc. A 474, 20180674 (2018).

[3] S. Stolz, O. Gr¨oning, J. Prinz, H. Brune, and R. Widmer, Proc. Natl. Acad. Sci. U.S.A. 117 (26), 14838 (2020).

[4] P. C. Koch, J. Phys. : Condens. Matter 28, 213001 (2016).

[5] E. Pian et al., Nature 551, 67 (2017).

[6] D. M. Siegel, J. Barnes, and B. D. Metzger, Nature 569, 241 (2019).

[7] S. G. Nilsson, C. F. Tsand, A. Sobiczewski, Z. Szyman´ski, S. Wycech, C. Gustafson, I-. L. Lamm, P. M¨olle, and B. Nilsson, Nucl. Phys. A 131, 1 (1969).

[8] K. Morita et al., J. Phys. Soc. Japan. 81, 103201 (2012).

[9] Yu. Ts. Oganessian et al., Phys. Rev. C 74, 044602 (2006).

[10] S. Hofmann, J. Phys. G: Nucl. Part. Phys. 42, 114001 (2015).

[11] J. Khuyagbaatar et al., Phys. Rev. C 102, 064602 (2020).

[12] R. Bass, Nuclear Reactions with Heavy Ions, (Springer-Verlag Berlin, Heidelber 1980).

[13] V. I. Zagrebaev, Y. Aritomo, M. G. Itkis, Yu. Ts. Oganessian, and M. Ohta, Phys. Rev. C 65, 014607 (2001).

[14] K. Hagino and N. Takigawa, Prog. Theo. Phys. 128, 1061 (2012).

[15] B. B. Back, H. Esbensen, C. L. Jiang, and K. E. Rehm, Rev. Mod. Phys. 86, 317 (2014).

[16] D. A. Bromley, Treatise on Heavy-Ion Science Volume 2, (Plenum Press New York, 1984).

[17] P. Fr¨obrich and R. Lipperheide, Theory of Nuclear Reactions, (Oxford University Press, 1996).

[18] Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).

[19] K. Banerjee, et al., Phys. Rev. Lett. 122, 232503 (2019).

[20] A. Bohr and B. Mottelson, Nuclear Structure Volumes 1 and 2, (World Scientific, 1998).

[21] P. Ring and P. Shuck, The Nuclear Many Body Problem, (Springer-Verlag New York, 1980).

[22] A. Mengoni and Y. Nakajima, J. Nucl. Sci. Technol. 31, 151 (1994).

[23] V. Zagrebaev and W. Greiner, J. Phys. G: Nucl. Part. Phys. 31, 825 (2005).

[24] O´ . Akyu¨z and A. Winther, in Nuclear Structure and Heavy-Ion Physics, Proceedings of the International School of Physics, ”Enrico Fermi, ” Course LXXVII, Varenna, 1979, edited by R. A. Broglia, C. H. Dasso, and R. Richi (North-Holland, Amsterdam, 1981).

[25] D. S. Lemons and A. Gythiel, Am. J. Phys. 65, 1079 (1997).

[26] M. V. Chushnyakova and I. I. Gontchar, Phys. Rev. C 87, 014614 (2013).

[27] D. H. E Gross and H. Kalinowski, Phys. Rep. 45, 175 (1978).

[28] Y. Aritomo, K. Hagino, K. Nishio, and S. Chiba, Phys. Rev. C 85, 044614 (2012).

[29] F. L. H. Wolf, Phys. Rev. C 87, 1379 (1987).

[30] A. Messiah, Quantum Mechanics, (John Wiley & Sons Inc, 1961).

[31] G. H. Rawitscher, Nucl. Phys. 85, 337 (1963).

[32] M. Evers, M. Dasgupta, D. J. Hinde, L. R. Gasques, M. L. Brown, R. Rafiei, and R. G. Thomas, Phys. Rev. C 78, 034614 (2008).

[33] N. W. Lewin, N. N. Htike, and K. Hagino, Phys. Rev. C. 95, 064601 (2017).

[34] M. D. High and B. Cujec, Nucl. Phys. A 278, 149 (1977).

[35] L. C. Vaz, J. Alexander, and G. R. Satchler, Phys. Rep. 69, 383 (1981).

[36] A. B. Balantekin, S. E. Koonin, and J. W. Negele, Phys. Rev. C 28, 1565 (1983).

[37] C. Y. Wong, Phys. Rev. Lett. 31, 766 (1973).

[38] H. W. Broek, J. L. Yntema, B. Bruck, and G. R. Satchler, Nucl. Phys. 64, 259 (1965).

[39] O. Tanimura, Phys. Rev. C 35, 1600 (1987).

[40] K. Hagino, N. Rowley, and A. T. Kruppa, Comp. Phys. Comm. 123, 143 (1999).

[41] N. Rowley, G.R. Satchler, and P.H. Stelson, Phys. Lett. B 254, 25 (1991).

[42] R. A. Broglia, C. H. Dasso, S. Landowne, and A. Winther, Phys. Rev. C 27, 2433(R) (1983).

[43] C. L. Jiang, K. E. Rehm, B. B. Back, H. Esbensen, R. V. F. Janssens, A. M. Stefanini, and G. Montagnoli, Phys. Rev. C 89, 051603(R) (2014).

[44] R. A. Broglia and A. Winther, Heavy Ion Reactions, (Addison-Wesley Publishing Company, 1991).

[45] G. Scamps and K. Hagino, Phys. Rev. C 92, 054614 (2015).

[46] H. Esbensen, G. Montagnoli, and A. M. Stefanini, Phys. Rev. C 93, 034609 (2016).

[47] C. L. Jiang et al., Phys. Rev. Lett. 89, 052701 (2002).

[48] G. Montagnoli and A. M. Stefanini Eur. Phys. J. A 53, 169 (2017).

[49] G. Montagnoli, et al., Phys. Rev. C 101, 044608 (2020).

[50] C. H. Dasso Phys. Rev. C 68, 054604 (2003).

[51] I. I. Gontchar, D. J. Hinde, M. Dasgupta, and J. O. Newton, Phys. Rev. C 69, 024610 (2004).

[52] S¸. Mi¸sicu and H. Esbensen, Phys. Rev. Lett. 96, 112701 (2006).

[53] S¸. Mi¸sicu and H. Esbensen, Phys. Rev. C 75, 034606 (2007).

[54] T. Ichikawa, K. Hagino, and A. Iwamoto, Phys. Rev. C 75, 064612 (2007).

[55] T. Ichikawa and K. Matsuyanagi, Phys. Rev. Lett. 92, 021602(R) (2015).

[56] T. Ichikawa, Phys. Rev. C 92, 064604 (2015).

[57] J. O. Newton, R. D. Butt, M. Dasgupta, D. J. Hinde, I. I. Gontchar, C. R. Morton, and K. Hagino, Phys. Rev. C 70, 024605 (2004).

[58] M. Dasgupta, D. J. Hinde, A. Diaz-Torres, B. Bouriquet, Catherine I. Low, G. J. Milburn, and J. O. Newton Phys. Rev. Lett. 99, 192701 (2007).

[59] K. Hagino, M. Dasgupta, I. I. Gontchar, D. J. Hinde, C. R. Morton, and J. O. Newton, arXiv:nucl-th/0110065v1 (2001).

[60] G. Pollarolo, Nucl. Phys. A 787, 206 (2007).

[61] H. Esbensen and S¸. Mi¸sicu, Phys. Rev. C 76, 054609 (2007).

[62] A. Doaz-Torres, D. J. Hinde, M. Dasgupta, G. J. Milburn, and J. A. Tostevin, Phys. Rev. C 78, 064604 (2008).

[63] J. Gehring, B. B. Back, K. C. Chan, M. Freer, D. Henderson, C. L. Jiang, K. E. Rehm, J. P. Schiffer, M. Wolanski, and A. H. Wuosmaa Phys. Rev. C 55, 2959 (1997).

[64] K. E. Rehm, A. M. van den Berg, J. J. Kolata, D. G. Kovar, W. Kutschera, G. Rosner, G. S. F. Stephans, and J. J. Yntema, Phys. Rev. C 37, 2629 (1988).

[65] M. Evers, M. Dasgupta, D. J. Hinde, D. H. Luong, R. Rafiei, R. du Rietz, and C. Simenel, Phys. Rev. C 84, 054614 (2011).

[66] D. C. Rafferty, M. Dasgupta, D. J. Hinde, C. Simenel, E. C. Simpson, E. Williams, I. P. Carter, K. J. Cook, D. H. Luong, S. D. McNeil, K. Ramachandran, K. Vo-Phuoc, and A. Wakhle, Phys. Rev. C 94, 024607 (2016).

[67] D. C. Rafferty, Energy dissipation in multinucleon transfer reactions, Doctoral thesis, Australian National University (2020).

[68] C. Simenel, Eur. Phys. J. A 48, 152 (2012).

[69] E. Williamns, K. Sekizawa, D. J. Hinde, C. Simenel, M. Dasgupta, I. P. Carter, K. J. Cook, D. Y. Jeung, S. D. McNeil, P. L. Palshetkar, D. C. Rafferty, K. Ramachandran, and A. Wakhle, Phys. Rev. Lett. 120, 022501 (2018).

[70] K. Sekizawa and S. Ayik, Phys. Rev. C 102, 014620 (2020).

[71] N. Hasegawa, K. Hagino, and Y. Tanimura, Phys. Lett. B 808, 135693 (2020).

[72] U. Weiss, Quantum Dissipative Systems (World Scientific, 2008).

[73] H. -P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).

[74] K. Nigam and K. Banerjee, arXiv:math-ph/1602.01563 v2.

[75] M. Tokieda and K. Hagino, Phys. Rev. C 95, 054604 (2017).

[76] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, (Springer-Verlag Berlin Heidelberg, 1985).

[77] R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118 (1963).

[78] Z. Tang, X. Ouyang, Z. Gong, H. Wang, and J. Wu, J. Chem. Phys. 143, 224112 (2015).

[79] Y. Ke and Y. Zhao, J. Chem. Phys. 145, 024101 (2016).

[80] A. O. Caldeira and A. J. Leggett, Physica 121A, 587 (1983).

[81] A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).

[82] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw- Hill New York, 2005).

[83] K. M¨ohring and U. Smilansky, Nucl. Phys. A 338, 227 (1980).

[84] R. L. Stratonovich, Sov. Phys. Dokl. 2, 416 (1958), J. Hubbard, Phys. Rev. Letters 3, 77 (1959).

[85] G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. A 37, 4419 (1988).

[86] N. Takigawa, K. Hagino, M. Abe, and A. B. Balantekin, Phys. Rev. C 49, 2630 (1994).

[87] M. Tokieda and K. Hagino, Ann. Phys. 412, 168005 (2020).

[88] H. -P. Breuer, Eur. Phys. J. D 29, 105 (2004).

[89] J. T. Stockburger, Chem. Phys. 296, 159 (2004).

[90] D. Lacroix, Phys. Rev. E 77, 041126 (2008).

[91] R. Hartmann and W. T. Strunz, J. Chem. Theory. Comput. 13, 5834 (2017).

[92] G. Hupin and D. Lacroix, Phys. Rev. C 81, 014609 (2010).

[93] H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).

[94] Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).

[95] Y. A. Yan, F. Yang, Y. Liu, and J.S. Shao, Chem. Phys. Lett. 395, 216 (2004).

[96] A. Ishizaki and Y. Tanimura, J. Phys. Soc. Jpn. 74, 3131 (2005).

[97] Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006).

[98] L. Ye, X. Wang, D. Hou, R. -X. Xu, X. Zheng, and Y. Yan, WIREs. Comput. Mol. Sci. 6, 608 (2016).

[99] Y. Tanimura, J. Chem. Phys. 141, 044114 (2014).

[100] Y. Tanimura, J. Chem. Phys. 142, 144110 (2015).

[101] W. Wu, Phys. Rev. A 98, 012110 (2018).

[102] C. -Y. Hsieh and J. Cao, J. Chem. Phys. 148, 014103 (2018).

[103] M. Tsuchimoto and Y. Tanimura, J. Chem. Theory. Comput. 11, 3859 (2015).

[104] K. Nakamura and Y. Tanimura, Phys. Rev. A 98, 012109 (2018).

[105] M. Schr¨oder, M. Schreiber, and U. Kleinekathofer, J. Chem. Phys. 126, 114102 (2007).

[106] W. Jiang, F. -Z. Wu, and G. -J. Yang, Phys. Rev. A 98, 052134 (2018).

[107] H. Tian and G. Chen, J. Chem. Phys. 137, 204114 (2012).

[108] H. Rahman and U. Kleinekath¨ofer, arXiv:physics.chem-ph/1904.06982.

[109] R. X. Xu, H. D. Zhang, X. Zheng, and Y. J. Yan, Sci. China Chem. 58, 1816 (2015).

[110] H. Liu, L. Zhu, S. Bai, and Q. Shi, J. Chem. Phys. 140, 134106 (2014).

[111] A. T. Kruppa, P. Romain, M. A. Nagarajan, and N. Rowley, Nucl. Phys. A 560, 845 (1993).

[112] S. Takagi, Macroscopic Quantum Tunneling, (Cambridge University Press, 1997).

[113] A. Leggett, Journal de Physique Colloques (C6), 39 (1978).

[114] Y. Y. Fein, P. Geyer, P. Zwick, F. Kia-lka, S. Pedalino, M. Mayor, S. Gerlich, and M. Arndt Nature Physics 15, 1242 (2019).

[115] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).

[116] D. B. Schwartz, B. Sen, C. N. Archie, and J. E. Lukens, Phys. Rev. Lett. 55, 1547 (1985).

[117] U. Fano, Phys. Rev. 131, 259 (1963)

[118] S. Mukamel, J. Chem. Phys. 70, 2479 (1979)

[119] C.R. Morton, A. C. Berriman, M. Dasgupta, D. J. Hinde, J. O. Newton, K. Hagino, and I. J. Thompson Phys. Rev. C 60, 044608 (1999).

[120] K. Yabana, Prog. Theor. Phys. 97, 437 (1997).

[121] T. Nakatsukasa, K. Yabana, M. Ito, M. Kobayashi, and M. Ueda, Prog. Theor. Phys. Suppl. 154, 85 (2004).

[122] R. Bruinsma and P. Bak, Phys. Rev. Lett. 56, 420 (1986).

[123] A. Widom and T. D. Clark, Phys. Rev. Lett. 48, 63 (1982).

[124] Edward G. Harris, Phys. Rev. A 48, 995 (1993).

[125] W. Koch, F. Grossmann, and D. J. Tannor, Phys. Rev. Lett. 105, 230405 (2010).

[126] F. Grossmann (private communication).

[127] H. Grabert, U. Weiss, and P. Hanggi, Phys. Rev. Lett. 52, 2193 (1984).

[128] K. E. Rehm, H. Esbensen, C. L. Jiang, B. B. Back, A. M. Stefanini, and G. Mon- tagnoli, Phys. Rev. C 94, 044612 (2016).

[129] P. Fr¨obrich, R. Lipperheide, and K. M¨ohring, Z. Phys. B - Codenced Matter 78, 325 (1990).

[130] R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamian, and N. V. Antonenko Physics of Particles and Nuclei, 2017, 48. No. 1, 157 (2017).

[131] V. V. Sargsyan, Z. Kanokov, G. G. Adamian, and N. V. Antonenko Physics of Particles and Nuclei, 2016, 47. No. 2, 157 (2016).

[132] V. V. Sargsyan, Y. V. Palchikov, Z. Kanokov, G. G. Adamian, and N. V. Antonenko Phys. Rev. A 75, 062115 (2007).

[133] H. Hofmann and P. J. Siemens, Nucl. Phys. A 257, 165 (1976).

[134] H. Hofmann and P. J. Siemens, Nucl. Phys. A 275, 464 (1977).

[135] S. Yamaji and A. Iwamoto, Z. Phys. A. - Atoms and Nuclei 313, 161 (1983).

[136] H. Hofmann, The Physics of Warm Nuclei, (Oxford University Press Inc., New York 2008).

[137] A. Bulgac, S. Jin, K. J. Roche, N. Schunck, and I. Stetcu Phys. Rev. C 100, 034615 (2019).

[138] F. A. Ivanyuk, H. Hofmann, V. V. Pashkevich, and S. Yamaji, Phys. Rev. C 55, 1730 (1997).

[139] M. Tokieda and K. Hagino, Front. Phys. 8:8 (2020).

[140] A. Trzcin´ska, et al., Phys. Rev. C 102, 034617 (2020).

[141] C. H. Dasso and G. Pollarolo, Phys. Rev. C 39, 2073 (1989).

[142] M. V. Chushnyakova, R. Bhattacharya, and I. I. Gontchar, Phys. Rev. C 90, 017603 (2014).

[143] G. Scamps and D. Lacroix, Phys. Rev. C 87, 014605 (2013).

[144] K. Sekizawa, Phys. Rev. C 96, 014615 (2017).

[145] K. Washiyama, D. Lacroix, and S. Ayik, Phys. Rev. C 79, 024609 (2009).

[146] X. Jiang, S. Yan, and J. A. Maruhn, Phys. Rev. C 88, 044611 (2013).

[147] K. Wen, F. Sakata, Z-X Li, X-Z. Wu, Y-X. Zhang, S-G. Zhou, X. Jiang, S. Yan, and J. A. Maruhn, Phys. Rev. C 90, 054613 (2014).

[148] A. M. Stefanini et al., Phys. Lett. B 728, 639 (2014).

[149] A. M. Stefanini et al., Phys. Rev. C 100, 044619 (2019).

[150] G. G. Adamian, R. V. Jolos, A. K. Nasirov, and A. I. Muminov, Phys. Rev. C 56, 373 (1997).

[151] K. Wen, F. Sakata, Z-X. Li, X-Z. Wu, Y-X. Zhang, S-G. Zhou, Phys. Rev. Lett. 111, 012501 (2013).

[152] A. Damjanovi´c, I. Kosztin, U. Kleinekathofer, and K. Schulten Phys. Rev. E 65, 031919 (2002).

[153] A. S. Umar, V. E. Oberacker, R. Keser,, J.A. Maruhn, and P.-G. Reinhard, AIP Conference Proceedings 1491, 369 (2012).

[154] K. Washiyama and K. Sekizawa, Front. Phys. 8:93 (2020).

[155] Y. Iwamoto and Y. Tanimura, J. Chem. Phys. 149, 084110 (2018)

[156] R. G. Newton, Scattering Theory of Waves and Particles, (McGraw-Hill, Inc. 1966).

[157] J. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collision, (John Wiley & Sons, Inc. 1972).

[158] W. Zhu, Y. Huang, D. J. Kouri, M. Arnold, and D. K. Hoffman, Phys. Rev. Lett. 74, 1310 (1994).

[159] D. J. Kouri and D. K. Hoffman, Few-Body Systems 18, 203 (1995).

[160] A. B. Balantekin and N. Takigawa, Ann. Phys. (N.Y.) 160, 441 (1985).

[161] Y. Zhou, Y. Yan, and J. Shao, Europhys. Lett. 72, 334 (2005).

[162] A. Winther, Nucl. Phys. A 572, 191 (1994).

[163] G. Pollarolo and A. Winther, Phys. Rev. C 62, 054611 (2000).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る