リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantum Information Capsule and Its Applications to Communication Through Quantum Fields」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantum Information Capsule and Its Applications to Communication Through Quantum Fields

Yamaguchi Koji 東北大学

2021.03.25

概要

Where is information stored in quantum systems? This fundamental question plays a crucial role in black hole physics. Ever since Hawking discovered a potential problem to incorporate quantum field theory with gravity in 1976 [1], it still remains elusive whether Nature is or is not able to destroy information in black holes emitting Hawking radiation [2]. If information is preserved in black hole evaporation processes, which is supported by the AdS/CFT correspondence [3], it is quite important to explore the structure of information storage. Several candidates for the information-carrying degrees of freedom have been proposed such as the Hawking radiation itself [4, 5], hidden messengers in it [6], black hole quasi-normal modes [7], soft hairs [8–10], and the zero-point fluctuation [11] as the purification partner of the Hawking radiation [12]. On the other hand, investigation on information storage is also of practical importance in developments of quantum tech- nologies such as quantum computation [13], quantum repeaters [14] in quantum network [15], quantum cryptography [16] and quantum authentication [17].

In this thesis, based on the author’s published works [18–21], he will address the question of where information is stored and provide a new tool to identify and help isolate the exact degrees of freedom carrying information in quantum systems, called quantum information capsule (QIC). In particular, a formula to identify QIC in quantum fields [19, 21] is of fundamental importance since a formula to identify the partner mode in Ref. [22] can be derived from it, which has been used in studies of information storage in quantum fields in curved spacetimes [12, 22, 23] and of protocols to extract entanglement from a field [24, 25]. In addition, the results in these works are also expected to be useful to control and help optimize the flow of information in quantum communications, e.g., in and between quantum computers. As an explicit application of the QIC technique, the author investigated communication through quantum fields in Ref. [21]. A new communication protocol using the vacuum fluctuations of the quantum field is proposed, with which the efficiency of information transmission can be enhanced.

Let us start with analyzing information stored in classical systems such as hard disks in conventional classical computers. As a simple model, consider a storage system composed of N units, each of which is capable of storing one bit information, i.e., it can be either 0 or 1. The state of this system can be described by an N -length binary number b = b1b2 · · · bN , where bi = 0 or 1. Suppose that the system is initialized to a fixed binary number b and one bit information c = 0 or 1 is encoded into the first unit by the exclusive disjunction ⊕.

As a consequence, the state of the storage turns into b′1b2 bN , where b′1 := b1 c. In this case, the encoded information can trivially be retrieved by reading out the first unit since the encoded information c is uniquely determined as c = b1 b′1. Therefore, information is locally stored in the storage system. A schematic picture of this situation is depicted in Fig. 1.1.

参考文献

[1] S. W. Hawking, “Breakdown of predictability in gravitational collapse”, Phys. Rev. D 14, 2460 (1976).

[2] S. W. Hawking, “Particle creation by black holes”, Communications in mathematical physics 43, 199 (1975).

[3] J. Maldacena, International Journal of Theoretical Physics 38, 1113 (1999).

[4] D. N. Page, “Information in black hole radiation”, Phys. Rev. Lett. 71, 3743 (1993).

[5] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black holes: complementarity or firewalls?”, Journal of High Energy Physics 2013, 10.1007/jhep02(2013)062 (2013).

[6] B. Zhang, Q.-Y. Cai, M.-S. Zhan, and L. You, “Information conservation is funda- mental: recovering the lost information in hawking radiation”, International Journal of Modern Physics D 22, 1341014 (2013).

[7] C. Corda, “Time dependent schrodinger equation for black hole evaporation: no information loss”, Annals of Physics 353, 71 (2015).

[8] S. W. Hawking, M. J. Perry, and A. Strominger, “Soft hair on black holes”, Physical Review Letters 116, 10.1103/physrevlett.116.231301 (2016).

[9] M. Hotta, Y. Nambu, and K. Yamaguchi, “Soft-hair-enhanced entanglement beyond page curves in a black hole evaporation qubit model”, Physical Review Letters 120, 10.1103/physrevlett.120.181301 (2018).

[10] B. Yoshida, “Soft mode and interior operator in the hayden-preskill thought exper- iment”, Physical Review D 100, 10.1103/physrevd.100.086001 (2019).

[11] F. Wilczek, “Quantum purity at a small price: Easing a black hole paradox”, in International Symposium on Black holes, Membranes, Wormholes and Superstrings (Feb. 1993), pp. 1–21.

[12] M. Hotta, R. Schu¨tzhold, and W. G. Unruh, “Partner particles for moving mirror radiation and black hole evaporation”, Phys. Rev. D 91, 124060 (2015).

[13] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information: 10th anniversary edition (Cambridge University Press, 2010).

[14] H.-J. Briegel, W. Du¨r, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication”, Phys. Rev. Lett. 81, 5932 (1998).

[15] H. J. Kimble, “The quantum internet”, Nature 453, 1023 (2008).

[16] C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing”, in Proceedings of the international conference on computers, systems & signal processing (1984), pp. 175–179.

[17] H. Barnum, C. Crepeau, D. Gottesman, A. Smith, and A. Tapp, “Authentication of quantum messages”, in The 43rd annual ieee symposium on foundations of computer science, 2002. proceedings. (2002), pp. 449–458.

[18] K. Yamaguchi, N. Watamura, and M. Hotta, “Quantum information capsule and information delocalization by entanglement in multiple-qubit systems”, Physics Let- ters A 383, 1255 (2019).

[19] K. Yamaguchi and M. Hotta, “Quantum information capsule in multiple-qudit sys- tems and continuous-variable systems”, Physics Letters A 384, 126447 (2020).

[20] M. Hotta and K. Yamaguchi, “Strong chaos of fast scrambling yields order: emer- gence of decoupled quantum information capsules”, Physics Letters A 384, 126078 (2020).

[21] K. Yamaguchi, A. Ahmadzadegan, P. Simidzija, A. Kempf, and E. Martin-Martinez, “Superadditivity of channel capacity through quantum fields”, Physical Review D 101, 10.1103/physrevd.101.105009 (2020).

[22] J. Trevison, K. Yamaguchi, and M. Hotta, “Spatially overlapped partners in quan- tum field theory”, Journal of Physics A: Mathematical and Theoretical 52, 125402 (2019).

[23] T. Tomitsuka, K. Yamaguchi, and M. Hotta, “Partner formula for an arbitrary moving mirror in 1 + 1 dimensions”, Phys. Rev. D 101, 024003 (2020).

[24] J. Trevison, K. Yamaguchi, and M. Hotta, “Pure state entanglement harvesting in quantum field theory”, Progress of Theoretical and Experimental Physics 2018, 103A03, 10.1093/ptep/pty109 (2018).

[25] L. Hackl and R. H. Jonsson, “Minimal energy cost of entanglement extraction”, Quantum 3, 165 (2019).

[26] A. Fujiwara, “Quantum channel identification problem”, Phys. Rev. A 63, 042304 (2001).

[27] D. Harlow, “Jerusalem lectures on black holes and quantum information”, Reviews of Modern Physics 88, 10.1103/revmodphys.88.015002 (2016).

[28] B. Yoshida, Observer-dependent black hole interior from operator collision, 2019.

[29] Y. Sekino and L Susskind, “Fast scramblers”, Journal of High Energy Physics 2008, 065 (2008).

[30] P. Hayden and J. Preskill, “Black holes as mirrors: quantum information in random subsystems”, Journal of High Energy Physics 2007, 120 (2007).

[31] R. D. Sorkin, “Impossible measurements on quantum fields”, in Directions in general relativity, Proceedings of the 1993 International Symposium, Maryland: Papers in Honor of Dieter Brill, Vol. 2 (1993).

[32] W. G. Unruh, “Notes on black-hole evaporation”, Phys. Rev. D 14, 870 (1976).

[33] B. S. DeWitt, in General relativity: an einstein centenary survey, edited by S Hawk- ing and W. Israel (Cambridge University Press, 1979).

[34] R. G. McLenaghan, “On the validity of huygens’ principle for second order partial differential equations with four independent variables. part i : derivation of necessary conditions”, en, Annales de l’I.H.P. Physique th´eorique 20, 153 (1974).

[35] S. Czapor and R. McLenaghan, “Hadamard’s problem of diffusion of waves”, Acta Physica Polonica. Series B, Proceedings Supplement 1, 55 (2008).

[36] R. H. Jonsson, E. Mart´ın-Mart´ınez, and A. Kempf, “Information transmission with- out energy exchange”, Phys. Rev. Lett. 114, 110505 (2015).

[37] A. Ahmadzadegan, E. Martin-Martinez, and A. Kempf, Quantum shockwave com- munication, 2018.

[38] D. Gross and J. Eisert, “Novel schemes for measurement-based quantum computa- tion”, Phys. Rev. Lett. 98, 220503 (2007).

[39] J.-M. Cai, W. Du¨r, M. Van den Nest, A. Miyake, and H. J. Briegel, “Quantum computation in correlation space and extremal entanglement”, Phys. Rev. Lett. 103, 050503 (2009).

[40] A. Serafini, “Quantum continuous variables: a primer of theoretical methods”, (2017).

[41] C. Helstrom, “Minimum mean-squared error of estimates in quantum statistics”, Physics Letters A 25, 101 (1967).

[42] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s theorem, quantum theory and conceptions of the universe (Springer, 1989), pp. 69–72.

[43] B. Collins, “Moments and cumulants of polynomial random variables on unitary- groups, the Itzykson-Zuber integral, and free probability”, International Mathemat- ics Research Notices 2003, 953 (2003).

[44] E. Lubkin, “Entropy of an n-system from its correlation with a k-reservoir”, Journal of Mathematical Physics 19, 1028 (1978).

[45] S. Lloyd and H. Pagels, “Complexity as thermodynamic depth”, Annals of Physics 188, 186 (1988).

[46] D. N. Page, “Average entropy of a subsystem”, Phys. Rev. Lett. 71, 1291 (1993).

[47] S. Lloyd, “Black holes, demons, and the loss of coherence: how complex systems get information and what they do with it”, PhD thesis (1988).

[48] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, “Canonical typicality”, Physical Review Letters 96, 10.1103/physrevlett.96.050403 (2006).

[49] S. Popescu, A. J. Short, and A. Winter, “Entanglement and the foundations of statistical mechanics”, Nature Physics 2, 754 (2006).

[50] A Sugita, “On the basis of quantum statistical mechanics.”, NONLINEAR PHE- NOMENA IN COMPLEX SYSTEMS 10, 192 (2007).

[51] M. Hotta, “Quantum measurement information as a key to energy extraction from local vacuums”, Phys. Rev. D 78, 045006 (2008).

[52] P. Simidzija and E. Martin-Martinez, “Nonperturbative analysis of entanglement harvesting from coherent field states”, Physical Review D 96, 10.1103/physrevd. 96.065008 (2017).

[53] P. Simidzija, R. H. Jonsson, and E. Martin-Martinez, “General no-go theorem for entanglement extraction”, Physical Review D 97, 10.1103/physrevd.97.125002 (2018).

[54] C. E. Shannon, “A mathematical theory of communication”, The Bell System Tech- nical Journal 27, 379 (1948).

[55] P. Simidzija, R. H. Jonsson, and E. Martin-Martinez, “General no-go theorem for entanglement extraction”, Physical Review D 97, 10.1103/physrevd.97.125002 (2018).

[56] S. J. Summers and R. Werner, “The vacuum violates bell’s inequalities”, Physics Letters A 110, 257 (1985).

[57] S. J. Summers and R. Werner, “Bell’s inequalities and quantum field theory. i. general setting”, Journal of Mathematical Physics 28, 2440 (1987).

[58] A. Valentini, “Non-local correlations in quantum electrodynamics”, Physics Letters A 153, 321 (1991).

[59] B. Reznik, “Entanglement from the vacuum”, Foundations of Physics 33, 167 (2003).

[60] B. Reznik, A. Retzker, and J. Silman, “Violating bell’s inequalities in vacuum”, Phys. Rev. A 71, 042104 (2005).

[61] S. J. Olson and T. C. Ralph, “Entanglement between the future and the past in the quantum vacuum”, Phys. Rev. Lett. 106, 110404 (2011).

[62] S. J. Olson and T. C. Ralph, “Extraction of timelike entanglement from the quantum vacuum”, Phys. Rev. A 85, 012306 (2012).

[63] G. Salton, R. B. Mann, and N. C. Menicucci, “Acceleration-assisted entanglement harvesting and rangefinding”, New Journal of Physics 17, 035001 (2015).

[64] A. Pozas-Kerstjens and E. Mart´ın-Mart´ınez, “Harvesting correlations from the quan- tum vacuum”, Phys. Rev. D 92, 064042 (2015).

[65] G. V. Steeg and N. C. Menicucci, “Entangling power of an expanding universe”, Phys. Rev. D 79, 044027 (2009).

[66] E. Martin-Martinez and N. C. Menicucci, “Cosmological quantum entanglement”, Classical and Quantum Gravity 29, 224003 (2012).

[67] E. Martin-Martinez and N. C. Menicucci, “Entanglement in curved spacetimes and cosmology”, Classical and Quantum Gravity 31, 214001 (2014).

[68] Y. Nambu, “Entanglement structure in expanding universes”, Entropy 15, 1847 (2013).

[69] S. Kukita and Y. Nambu, “Entanglement dynamics in de sitter spacetime”, Classical and Quantum Gravity 34, 235010 (2017).

[70] S. Kukita and Y. Nambu, “Harvesting large scale entanglement in de sitter space with multiple detectors”, Entropy 19, 449 (2017).

[71] K. K. Ng, R. B. Mann, and E. Mart´ın-Mart´ınez, “Unruh-dewitt detectors and en- tanglement: the anti-de sitter space”, Phys. Rev. D 98, 125005 (2018).

[72] L. J. Henderson, R. A. Hennigar, R. B. Mann, A. R. H. Smith, and J. Zhang, “Harvesting entanglement from the black hole vacuum”, Classical and Quantum Gravity 35, 21LT02 (2018).

[73] L. J. Henderson, R. A. Hennigar, R. B. Mann, A. R. H. Smith, and J. Zhang, “Entangling detectors in anti-de sitter space”, Journal of High Energy Physics 2019, 10.1007/jhep05(2019)178 (2019).

[74] W. Brenna, R. B. Mann, and E. Mart´ın-Mart´ınez, “Anti-unruh phenomena”, Physics Letters B 757, 307 (2016).

[75] M. Hotta, “Controlled hawking process by quantum energy teleportation”, Phys. Rev. D 81, 044025 (2010).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る