リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mucosa-associated gut microbiome in Japanese patients with functional constipation.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mucosa-associated gut microbiome in Japanese patients with functional constipation.

SUGITANI Yoshihiko INOUE Ryo INATOMI Osamu 70530351 0000-0002-5837-6575 NISHIDA Atsushi 90719915 0000-0002-1288-3272 MORISHIMA So IMAI Takayuki 0000-0002-9170-4075 KAWAHARA Masahiro 80617449 0000-0002-2721-7571 NAITO Yuji 0000-0001-5443-788X ANDOH Akira 90252395 0000-0001-8533-2669 滋賀医科大学

2021

概要

The number of patients with chronic constipation is increasing in Japan. We investigated the gut mucosa-associated microbiome in Japanese patients with functional constipation. Diagnosis was made according to the Rome IV criteria. Mucosal samples were obtained by gentle brushing of mucosa surfaces. The gut microbiome was analyzed using 16S rRNA gene sequencing. There were no significant differences in bacteria α-diversity such as richness and evenness. The PCoA indicated significant structural differences between the constipation group and healthy controls (p = 0.017 for unweighted and p = 0.027 for weighted). The abundance of the phylum Bacteroidetes was significantly higher in the constipation group. The abundance of the genera Streptococcus, Fusobacterium, Comamonas, and Alistipes was significantly higher in the constipation group. The abundance of the genera Acinetobacter, Oscillospilla, Mucispirillum, Propinibacterium, and Anaerotruncus was significantly lower in the constipation group. In the constipation group, the proportion of genes responsible for sulfur metabolism, selenocompound metabolism, sulfur relay system was significantly higher and the proportion of d-arginine and d-ornithine metabolism and flavonoid biosynthesis was significantly lower. In conclusion, we identified differences of the mucosa-associated microbiome between Japanese patients with functional constipation and healthy controls. The mucosa-associated microbiome of functional constipation was characterized by higher levels of Bacteroidetes (Alistipes).

関連論文

参考文献

1 Mearin F, Lacy BE, Chang L, et al. Bowel disorders. Gastroenterology 2016;

150: 1393–1407.

2 Vazquez Roque M, Bouras EP. Epidemiology and management of chronic

constipation in elderly patients. Clin Interv Aging 2015; 10: 919–930.

3 Kawamura Y, Yamamoto S, Funaki Y, et al. Internet survey on the actual

situation of constipation in the Japanese population under 70 years old: focus

on functional constipation and constipation-predominant irritable bowel

syndrome. J Gastroenterol 2020; 55: 27–38.

4 Kosako M, Akiho H, Miwa H, Kanazawa M, Fukudo S. Impact of symptoms

by gender and age in Japanese subjects with irritable bowel syndrome with

constipation (IBS-C): a large population-based internet survey. Biopsychosoc

Med 2018; 12: 12.

5 Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during

pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol

Hepatol 2012; 9: 565–576.

6 Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism:

downstream impacts on host immune function and health, and therapeutic

implications. J Gastroenterol 2014; 49: 785–798.

7 Sheehan D, Moran C, Shanahan F. The microbiota in inflammatory bowel

disease. J Gastroenterol 2015; 50: 495–507.

8 Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel

disease: current status and the future ahead. Gastroenterology 2014; 146:

1489–1499.

9 Li J, Butcher J, Mack D, Stintzi A. Functional impacts of the intestinal

microbiome in the pathogenesis of inflammatory bowel disease. Inflamm

Bowel Dis 2015; 21: 139–153.

10 Parthasarathy G, Chen J, Chen X, et al. Relationship between microbiota of

the colonic mucosa vs feces and symptoms, colonic transit, and methane

production in female patients with chronic constipation. Gastroenterology

2016; 150: 367–379.e1.

11 Sundin J, Aziz I, Nordlander S, et al. Evidence of altered mucosa-associated

and fecal microbiota composition in patients with irritable bowel syndrome.

Sci Rep 2020; 10: 593.

12 Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool

consistency is strongly associated with gut microbiota richness and

composition, enterotypes and bacterial growth rates. Gut 2016; 65: 57–62.

13 Ringel Y, Maharshak N, Ringel-Kulka T, Wolber EA, Sartor RB, Carroll

Y. Sugitani et al.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

IM. High throughput sequencing reveals distinct microbial populations

within the mucosal and luminal niches in healthy individuals. Gut Microbes

2015; 6: 173–181.

Sartor RB. Gut microbiota: optimal sampling of the intestinal microbiota for

research. Nat Rev Gastroenterol Hepatol 2015; 12: 253–254.

Kashiwagi S, Naito Y, Inoue R, et al. Mucosa-associated microbiota in the

gastrointestinal tract of healthy Japanese subjects. Digestion 2020; 101: 107–

120.

Fukui A, Takagi T, Naito Y, et al. Higher levels of streptococcus in upper

gastrointestinal mucosa associated with symptoms in patients with functional

dyspepsia. Digestion 2020; 101: 38–45.

Nishino K, Nishida A, Inoue R, et al. Analysis of endoscopic brush samples

identified mucosa-associated dysbiosis in inflammatory bowel disease. J

Gastroenterol 2018; 53: 95–106.

Nishijima S, Suda W, Oshima K, et al. The gut microbiome of healthy

Japanese and its microbial and functional uniqueness. DNA Res 2016; 23:

125–133.

Kawada Y, Naito Y, Andoh A, Ozeki M, Inoue R. Effect of storage and

DNA extraction method on 16S rRNA-profiled fecal microbiota in Japanese

adults. J Clin Biochem Nutr 2019; 64: 106–111.

Inoue R, Sakaue Y, Sawai C, et al. A preliminary investigation on the

relationship between gut microbiota and gene expressions in peripheral

mononuclear cells of infants with autism spectrum disorders. Biosci Biotechnol

Biochem 2016; 80: 2450–2458.

Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of

high-throughput community sequencing data. Nat Methods 2010; 7: 335–336.

Edgar RC. Search and clustering orders of magnitude faster than BLAST.

Bioinformatics 2010; 26: 2460–2461.

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile

open source tool for metagenomics. PeerJ 2016; 4: e2584.

DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked

16S rRNA gene database and workbench compatible with ARB. Appl Environ

Microbiol 2006; 72: 5069–5072.

McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013; 8:

e61217.

Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and

explanation. Genome Biol 2011; 12: R60.

Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling

J. Clin. Biochem. Nutr. | March 2021 | vol. 68 | no. 2 | 191

©2021 JCBN

28

29

30

31

32

33

34

192

of microbial communities using 16S rRNA marker gene sequences. Nat

Biotechnol 2013; 31: 814–821.

Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data,

information, knowledge and principle: back to metabolism in KEGG. Nucleic

Acids Res 2014; 42: D199–D205.

Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis

of taxonomic and functional profiles. Bioinformatics 2014; 30: 3123–3124.

Ohkusa T, Koido S, Nishikawa Y, Sato N. Gut microbiota and chronic

constipation: a review and update. Front Med (Lausanne) 2019; 6: 19.

Forbes JD, Van Domselaar G, Bernstein CN. Microbiome survey of the

inflamed and noninflamed gut at different compartments within the gastrointestinal tract of inflammatory bowel disease patients. Inflamm Bowel Dis

2016; 22: 817–825.

Parkes GC, Rayment NB, Hudspith BN, et al. Distinct microbial populations

exist in the mucosa-associated microbiota of sub-groups of irritable bowel

syndrome. Neurogastroenterol Motil 2012; 24: 31–39.

Zhu L, Liu W, Alkhouri R, et al. Structural changes in the gut microbiome of

constipated patients. Physiol Genomics 2014; 46: 679–686.

Tyrrell KL, Warren YA, Citron DM, Goldstein EJC. Re-assessment of

phenotypic identifications of Bacteroides putredinis to Alistipes species using

molecular methods. Anaerobe 2011; 17: 130–134.

35 Nagai F, Morotomi M, Watanabe Y, Sakon H, Tanaka R. Alistipes indistinctus

sp. nov. and Odoribacter laneus sp. nov., common members of the human

intestinal microbiota isolated from faeces. Int J Syst Evol Microbiol 2010; 60

(Pt 6): 1296–1302.

36 O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin,

tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res

2015; 277: 32–48.

37 Carbonero F, Benefiel AC, Gaskins HR. Contributions of the microbial

hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol

2012; 9: 504–518.

This is an open access article distributed under the terms of the

Creative Commons Attribution-NonCommercial-NoDerivatives

License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

doi: 10.3164/jcbn.2093

©2021 JCBN

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る