リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「miR-582-5pはSkp1を標的とし、NF-κBシグナル伝達を介した炎症を制御する」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

miR-582-5pはSkp1を標的とし、NF-κBシグナル伝達を介した炎症を制御する

李, 栄智 LI, RONGZHI リ, エイチ 九州大学

2023.09.25

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

miR-582-5p targets Skp1 and regulates NF-κB
signaling-mediated inflammation
李, 栄智

https://hdl.handle.net/2324/7157310
出版情報:Kyushu University, 2023, 博士(歯学), 課程博士
バージョン:
権利関係:Creative Commons Attribution 4.0 International

(様式3)



名 :李 栄智

論 文 名 :miR-582-5p targets Skp1 and regulates NF-κB signaling-mediated inflammation
(miR-582-5p は Skp1 を標的とし、NF-κB シグナル伝達を介した炎症を制御する)



分 :甲

論 文 内 容 の 要 旨

A well-tuned inflammatory response is crucial for an effective immune process. Nuclear factor-kappa B
(NF-κB) is a key mediator of inflammatory and innate immunity responses, and its dysregulation is closely
associated with immune-related diseases. MicroRNAs (miRNAs) are important inflammation modulators. However,
miRNA-regulated mechanisms that implicate NF-κB activity are not fully understood. This study aimed to identify
a potential miRNA that could modulate the dysregulated NF-κB signaling during inflammation. We identified
miR-582-5p that was significantly downregulated in inflamed murine adipose tissues and RAW264.7 cells. S-phase
kinase-associated protein 1 (SKP1), a core component of an E3 ubiquitin ligase that regulates the NF-κB pathway,
was proposed as a biological target of miR-582-5p by using TargetScan. The binding of miR-582-5p to a
3′-untranslated region site on Skp1 was confirmed using a dual-luciferase reporter assay; in addition, transfection
with a miR-582-5p mimic suppressed SKP1 expression in RAW264.7 cells. Importantly, exogenous miR-582-5p
attenuated the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1 beta, and
interleukin-6 through suppressing the degradation of the NF-κB inhibitor alpha, followed by the nuclear
translocation of NF-κB. Therefore, exogenously applied miR-582-5p can attenuate the NF-κB signaling pathway
via targeting Skp1; this provides a prospective therapeutic strategy for treating inflammatory and immune diseases.

この論文で使われている画像

参考文献

[1] T. Lawrence, The nuclear factor NF-kappaB pathway in inflammation, Cold Spring

Harbor Perspect. Biol. 1 (2009), 001651.

[2] H. Wu, C.M. Ballantyne, Metabolic inflammation and insulin resistance in obesity,

Circ. Res. 126 (2020) 1549–1564.

[3] C. Nathan, A. Ding, Nonresolving inflammation Cell. 140 (2010) 871–882.

[4] E.A. Ross, A. Devitt, J.R. Johnson, Macrophages: the good, the bad, and the

gluttony, Front. Immunol. 12 (2021), 708186.

[5] S. Watanabe, M. Alexander, A.V. Misharin, G. Budinger, The role of macrophages

in the resolution of inflammation, J. Clin. Invest. 129 (2019) 2619–2628.

[6] T. Liu, L. Zhang, D. Joo, S.C. Sun, NF-κB signaling in inflammation, Signal

Transduct. Targeted Ther. 2 (2017), 17023.

[7] A. Kauppinen, T. Suuronen, J. Ojala, K. Kaarniranta, A. Salminen, Antagonistic

crosstalk between NF-κB and SIRT1 in the regulation of inflammation and

metabolic disorders, Cell. Signal. 25 (2013) 1939–1948.

[8] L. Catrysse, G. van Loo, Inflammation and the metabolic syndrome: the tissuespecific functions of NF-κB, Trends Cell Biol. 27 (2017) 417–429.

[9] L. Barnabei, E. Laplantine, W. Mbongo, F. Rieux-Laucat, R. Weil, NF-κB: at the

borders of autoimmunity and inflammation, Front. Immunol. 12 (2021), 716469.

[10] L.L. Thompson, K.A. Rutherford, C.C. Lepage, K.J. McManus, Aberrant SKP1

expression: diverse mechanisms impacting genome and chromosome stability,

Front. Cell Dev. Biol. 10 (2022), 859582.

[11] B. Huang, X.D. Yang, A. Lamb, L.F. Chen, Posttranslational modifications of NFkappaB: another layer of regulation for NF-kappaB signaling pathway, Cell. Signal.

22 (2010) 1282–1290.

[12] D.P. Bartel, Metazoan microRNAs, Cell 173 (2018) 20–51.

[13] A. Tahamtan, M. Teymoori-Rad, B. Nakstad, V. Salimi, Anti-inflammatory

microRNAs and their potential for inflammatory diseases treatment, Front.

Immunol. 9 (2018) 1377.

[14] S.M. Hammond, An overview of microRNAs, Adv. Drug Deliv. Rev. 87 (2015)

3–14.

[15] J. Wu, J. Ding, J. Yang, X. Guo, Y. Zheng, MicroRNA roles in the nuclear factor

kappa B signaling pathway in cancer, Front. Immunol. 9 (2018) 546.

[16] Y. Zou, Y. Cai, D. Lu, Y. Zhou, Q. Yao, S. Zhang, MicroRNA-146a-5p attenuates

liver fibrosis by suppressing profibrogenic effects of TGFβ1 and lipopolysaccharide,

Cell. Signal. 39 (2017) 1–8.

[17] K.D. Taganov, M.P. Boldin, K.J. Chang, D. Baltimore, NF-kappaB-dependent

induction of microRNA miR-146, an inhibitor targeted to signaling proteins of

innate immune responses, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 12481–12486.

[18] T. Sanada, T. Sano, Y. Sotomaru, R. Alshargabi, Y. Yamawaki, A. Yamashita, et al.,

Anti-inflammatory effects of miRNA-146a induced in adipose and periodontal

tissues, Biochem. Biophys. Rep. 22 (2020), 100757.

[19] M. Ju, B. Liu, H. He, Z. Gu, Y. Liu, Y. Su, et al., MicroRNA-27a alleviates LPSinduced acute lung injury in mice via inhibiting inflammation and apoptosis

through modulating TLR4/MyD88/NF-κB pathway, Cell Cycle 17 (2018)

2001–2018.

[20] T. Sano, M. Iwashita, S. Nagayasu, A. Yamashita, T. Shinjo, A. Hashikata, et al.,

Protection from diet-induced obesity and insulin resistance in mice lacking CCL19CCR7 signaling, Obesity 23 (2015) 1460–1471.

[21] T. Sano, S. Nagayasu, S. Suzuki, M. Iwashita, A. Yamashita, T. Shinjo, et al.,

Epicatechin downregulates adipose tissue CCL19 expression and thereby

ameliorates diet-induced obesity and insulin resistance, Nutr. Metabol. Cardiovasc.

Dis. 27 (2017) 249–259.

[22] Y.C. Chen, Y.S. Lai, Y.D. Hsuuw, K.T. Chang, Withholding of M-CSF supplement

reprograms macrophages to M2-like via endogenous CSF-1 activation, Int. J. Mol.

Sci. 22 (2021) 3532.

[23] T. Sano, T. Sanada, Y. Sotomaru, T. Shinjo, M. Iwashita, A. Yamashita, et al., Ccr7

null mice are protected against diet-induced obesity via Ucp1 upregulation and

enhanced energy expenditure, Nutr. Metab. 16 (2019) 43.

Supplementary Table S1. List of miRNA mimics and siRNAs used for transfection

miRNA

Catalog number

Source

mmu-miR-582-5p miRCURY LNA miRNA mimic

YM00471571

Qiagen, Hilden, Germany

control miRCURY LNA miRNA mimic

YM00479902

Qiagen, Hilden, Germany

Skp1-siRNA

MSS277837

Invitrogen, Carlsbad, CA, USA

control siRNA

S10C-0600

Cosmo Bio, Tokyo, Japan

siRNA

Supplementary Table S2. Sequence of primers used in this study

Gene name

Gapdh

Myd88

Irak4

Traf6

Tak1

Tab1

Tab2

Skp1

Tnfa

Il-1b

Il-6

Sequence

forward

5′-AATGTGTCCGTCGTGGATCTGA-3′

reverse

5′-GATGCCTGCTTCACCACCTTCT-3′

forward

5′-AGGACAAACGCCGGAACTTTT-3′

reverse

5′-GCCGATAGTCTGTCTGTTCTAGT-3′

forward

5′-CCTGGATGTCCTGGAACTTG-3′

reverse

5′-CAACACGCAGTAGGCAGAGA-3′

forward

5′-ACTGGGGACAATTCACTAGAGC-3′

reverse

5′-AAAGCGAGAGATTCTTTCCCTG-3′

forward

5′-AGGTTGTCGGAAGAGGAGCT-3′

reverse

5′-CTCCACAATGAAAGCCTTCC-3′

forward

5′-ACCCTGCTGGTGAGGAACT-3′

reverse

5′-AGGGACAGAGTCACACTAGTCT-3′

forward

5′-GGATAGAATAAGCGAAGCCCGGAA-3′

reverse

5′-CTCTTTGAAGCCGTTCCATCCT-3′

forward

5′-ATGCCTACGATAAAGTTGCAGA-3′

reverse

5′-TCCATTCCCAAATCTTCCAGC-3′

forward

5′-CATGGATCTCAAAGACAACC-3′

reverse

5′-GGTATATGGGCTCATACCAG-3′

forward

5′-GAAGAAGAGCCCATCCTCTG-3′

reverse

5′-TCATCTCGGAGCCTGTAGTG-3′

forward

5′-TGCCTTCTTGGGACTGATG-3′

reverse

5′-ACTCTGGCTTTGTCTTTCTTGT-3′

RNU6-6P

5′-CGCAAGGATGACACGCAAATTCGT-3′

mmu-miR-582-5p

5′-GGTATATGGGCTCATACCAG-3′

Gapdh: glyceraldehyde-3-phosphate dehydrogenase; Myd88: myeloid differentiation primary

response gene 88; Irak4: interleukin-1 receptor-associated kinase 4; Traf6: TNF receptorassociated factor 6; Tak1: mitogen-activated protein kinase kinase kinase 7; Tab1: TGF-beta

activated kinase 1/MAP3K7 binding protein 1; Tab2: TGF-beta activated kinase 1/MAP3K7

binding protein 2; Skp1: S-phase kinase-associated protein 1; Tnfa: tumor necrosis factor-alpha;

Il-1b: interleukin-1b; Il-6: interleukin-6; RNU6-6P: U6 small nuclear 6

Supplementary Table S3. List of antibodies used in western blotting and immunofluorescence staining

Antibody (Catalog number)

Source

TNF-α (AB-401-NA)

R&D Systems, Minneapolis, MN, USA

IL-1β /IL-1F2 (AF-401-NA)

R&D Systems, Minneapolis, MN, USA

IL-6 (AB-406-NA)

R&D Systems, Minneapolis, MN, USA

SKP1 (H-6; sc-5281)

Santa Cruz Biotechnology, Dallas, TX, USA

SKP1 (GTX106675)

GeneTex, Irvine, CA, USA

IκBα antibody (#9242)

Cell Signaling Technology, Beverly, MA, USA

phospho- NF-κB p65 (Ser536; #3033)

Cell Signaling Technology, Beverly, MA, USA

NF-κB p65 (D14E12; #8242)

Cell Signaling Technology, Beverly, MA, USA

β-actin (#4967)

Cell Signaling Technology, Beverly, MA, USA

Histone H1 (AE-4; sc-8030)

Santa Cruz Biotechnology, Dallas, TX, USA

LaminB1 (12987-1-AP)

ProteinTech, Rosemont, IL, USA

βTrCP (sc-390629)

Santa Cruz Biotechnology, Dallas, TX, USA

CUL-1 (sc-17775)

Santa Cruz Biotechnology, Dallas, TX, USA

RBX1 (sc-393640)

Santa Cruz Biotechnology, Dallas, TX, USA

HRP-conjugated anti-rabbit IgG (#7074)

Cell Signaling Technology, Beverly, MA, USA

HRP-conjugated anti-mouse IgG (#7076)

Cell Signaling Technology, Beverly, MA, USA

HRP-conjugated Rabbit Anti-Goat IgG (SA00001-4)

ProteinTech, Rosemont, IL, USA

Alexa Fluor 488-conjugated goat anti-rabbit IgG (A31627)

Invitrogen, Carlsbad, CA, USA

Alexa Fluor 488-conjugated goat anti-mouse IgG (A28175)

Invitrogen, Carlsbad, CA, USA

TNF-α: tumor necrosis factor-alpha; IL-1β: interleukin-1 beta; IL-6: interleukin-6; SKP1: S-phase kinaseassociated protein 1; IκBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha;

NF-κB: nuclear factor-kappa B; βTrCP: beta transducin repeat containing protein; CUL-1: cullin 1; RBX1:

ring-box 1

Supplementary Fig. S1

Food intake

g per day

Body weight

(g)

60

40

20

ND

ND

HFD

HFD

ND

HFD

10 11 12 13 14 15 16

(week-old)

Supplementary Fig. S2

TNF-α (17 kDa)

IL-1β (35 kDa)

Repeat 1

Repeat 1

Repeat 2

20 -

Repeat 2

48 -

17 35 11 1

25 20 17 -

β-actin (45 kDa)

IL-6 (22–28 kDa)

Repeat 1

Repeat 1

Repeat 2

Repeat 2

63 -

48 -

48 -

25 20 -

35 -

17 25 1

Supplementary Fig. S3

**

3.5

Skp1 (Fold change)

gene expression (Fold change)

NC-miR mimic

2.5

miR-582-5p mimic

1.5

**

0.5

1.5

0.5

Myd88 Irak4

Skp1 (Fold change)

Traf6

Tak1

Tab1

Skp1

1.5

Tab2

Control

miR-582-5p miR-582-5p

mimic

inhibitor

DAPI

NC-miR

mimic

0.5

miR-582-5p

mimic

Control

LPS

β-actin (45 kDa)

SKP1 (19 kDa)

Repeat 1

Repeat 2

Repeat 1

20 -

63 48 -

17 -

35 -

25 -

NC miR NC miR

Repeat 2

NC miR NC miR

Supplementary Fig. S4

CUL1

RBX1

β-actin

NC-miR miR-582-5p

mimic

mimic

1.5

ns

0.5

NC-miR miR-582-5p

mimic

mimic

βTrCP (60 kDa)

Repeat 1

ns

1.5

Fold change (RBX1)

βTrCP

Fold change (CUL1)

Fold change (βTrCP)

0.5

NC-miR miR-582-5p

mimic

mimic

1.5

ns

0.5

NC-miR miR-582-5p

mimic

mimic

CUL1 (85 kDa)

Repeat 2

Repeat 1 Repeat 2

75 -

135 -

63 -

100 -

48 -

75 63 -

35 48 25 20 -

35 NC miR NC miR

NC miR NC miR

β-actin (45 kDa)

RBX1 (17 kDa)

Repeat 1

Repeat 1

Repeat 2

Repeat 2

63 -

25 48 -

20 17 -

35 NC miR NC miR

NC miR NC miR

Supplementary Fig. S5

IκBα (39 kDa)

SKP1 (19 kDa)

Repeat 1

Repeat 1

Repeat 2

35 25 20 -

63 48 -

17 -

35 -

11 1

Repeat 2

p65 (65 kDa)

p-p65 (65 kDa)

Repeat 1

Repeat 1

Repeat 2

Repeat 2

75 -

100 75 -

63 48 35 -

63 48 -

25 1

β-actin (45 kDa)

Repeat 1

Repeat 2

48 35 25 -

p65 (65 kDa) in nucleus

Repeat 1

Histone H1 (32–33 kDa)

Repeat 1

Repeat 2

Repeat 2

48 -

75 63 -

35 25 -

48 -

35 1

Supplementary Fig. S6

IκBα (39 kDa)

SKP1 (19 kDa)

Repeat 1

Repeat 1

Repeat 2

Repeat 2

25 20 63 48 -

17 11 1

35 -

p-p65 (65 kDa)

Repeat 1

25 -

Repeat 2

75 -

p65 (65 kDa)

63 -

Repeat 1

48 -

Repeat 2

35 1

β-actin (45 kDa)

Repeat 1

75 -

63 48 -

Repeat 2

35 -

63 48 -

35 25 1

p65 (65 kDa) in nucleus

LaminB1 (66 kDa)

Repeat 2

Repeat 1

75 -

75 63 -

63 48 -

48 -

63 48 1

100 75 63 48 35 -

75 -

35 -

35 -

Repeat 2

Repeat 1

Supplementary Fig. S7

p65

Merge

(DAPI, p65)

LPS

NC-miR mimic

miR-582-5p mimic

Supplementary Figure Legends

Supplementary Fig. S1. To study HFD-induced obesity, male C57BL/6J mice were fed with ND

or HFD for 8 weeks until 16 weeks of age. (A) Representative photo of mice after 8 weeks of ND

or HFD feeding. (B, C) Measurements of food intake (B) and body weight (C).

Supplementary Fig. S2. RAW264.7 cells were transfected with the control microRNA mimic

(lane 2) or the miR-582-5p mimic (lane 3) for 24 h, followed by incubation with (lane 2 and 3) or

without (lane 1) LPS for 4 h. The molecular weights of TNF-α, IL-1β, IL-6, and β-actin are 17

kDa, 35 kDa, 22–28 kDa, and 45 kDa, respectively. Molecular weight markers (in thousands) are

shown on the left-hand side of each blot. Arrowheads represent the position of each

immunoreactive band.

Supplementary Fig. S3. (A) RAW264.7 cells were transfected with the miR-582-5p mimic (20

nM) or its corresponding negative control microRNA mimic (NC-miR mimic, 20 nM) for 24 h.

Then, mRNA was isolated and subjected to quantitative real-time PCR analysis. Bar graphs

represent the mean ± SD (n = 3 for each group) relative to the NC-miR mimic transfected group.

Gapdh was used as the internal reference gene. **p < 0.01 represent significant differences

between the indicated bars (Student’s t-test). Myd88: myeloid differentiation primary response

gene 88; Irak4: interleukin-1 receptor-associated kinase 4; Traf6: TNF receptor-associated factor

6; Tak1: mitogen-activated protein kinase kinase kinase 7; Tab1: TGF-beta activated kinase

1/MAP3K7 binding protein 1; Tab2: TGF-beta activated kinase 1/MAP3K7 binding protein 2;

Skp1: S-phase kinase-associated protein 1. (B) RAW264.7 cells were transfected with the miR582-5p mimic (20 nM) or the miR-582-5p inhibitor (20 nM) for 24 h. Then, mRNA was isolated

and subjected to quantitative real-time PCR analysis. Bar graphs represent the mean ± SD (n = 3

for each group). Gapdh was used as the internal reference gene. *p < 0.05, **p < 0.01, represent

significant differences between the indicated bars (Tukey-Kramer’s HSD-test). (C) RAW264.7

cells were incubated with (LPS) or without (Control) LPS for 2 h. Then, mRNA was isolated, and

Skp1 mRNA expression was measured using quantitative real-time PCR analysis. We repeated

this experiment thrice. Gapdh was used as the internal reference gene. Bar graphs represent the

mean ± SD (n = 3 for each group). *p < 0.05 represent significant differences between the

indicated bars (Student’s t-test). (D) RAW264.7 cells were transfected with the miR-582-5p

mimic (20 nM) or the negative control microRNA mimic (NC-miR mimic, 20 nM) for 24 h. The

nuclei were counterstained with DAPI (blue). Scale bar = 20 µm. (E) Two other data sets (Repeat

1 and 2) of Fig. 3D are shown. The molecular weights of SKP1 and β-actin are 19 kDa and 45

kDa, respectively. NC and miR represent the data from cells transfected with the negative control

microRNA mimic and miR-582-5p mimic, respectively. Molecular weight markers (in thousands)

are shown on the left-hand side of each blot. Arrowheads represent the position of each

immunoreactive band.

Supplementary Fig. S4. (A) RAW264.7 cells were transfected with either the miR-582-5p mimic

(20 nM) or its corresponding negative control microRNA mimic (NC-miR mimic, 20 nM) for 24

h. The protein levels of βTrCP, CUL1, and RBX1 were examined using western blotting. A set of

representative blots from three independent experiments are shown. β-actin was used as the

loading control. Bar graphs represent the mean ± SD (n = 3 for each group). ns, not significant

(Student’s t-test). (B) We repeated the above experiment thrice. The other two data sets are shown

as repeat 1 and 2 in (B). Molecular weight markers (in thousands) are shown on the left-hand side

of each blot. The molecular weights of βTrCP, CUL1, RBX1, and β-actin are 60 kDa, 85 kDa, 17

kDa, and 45 kDa, respectively. Arrowheads represent the position of each immunoreactive band.

NC and miR represent the data from cells transfected with the negative control microRNA mimic

and miR-582-5p mimic, respectively. βTrCP: beta transducin repeat-containing protein; CUL1:

cullin 1; RBX1: ring-box 1.

Supplementary Fig. S5. (A, B) RAW264.7 cells were transfected with si-control (lane 2) or siSkp1 (lane 3) for 24 h, followed by incubation with (lane 2, 3) or without (lane 1) LPS for 90 min;

cell lysates (A) or nuclear fraction (B) were analyzed. We repeated this experiment thrice; one set

of data is shown in Fig. 4B and C, and the other two other original images (Repeat 1 and 2) are

shown (A, B). The molecular weights of SKP1, IκBα, p65 (p-p65), β-actin, and histone H1 are 19

kDa, 39 kDa, 65 kDa, 45 kDa, and 32–33 kDa, respectively. Molecular weight markers (in

thousands) are shown on the left-hand side of each blot. Arrowheads represent the position of

each immunoreactive band.

Supplementary Fig. S6. (A, B) RAW264.7 cells were transfected with the control microRNA

mimic (lane 2) or the miR-582-5p mimic (lane 3) for 24 h, followed by the incubation with (lane

2, 3) or without (lane 1) LPS for 90 min; cell lysates (A) or nuclear fraction (B) were analyzed.

We repeated these experiments thrice; one set of data is shown in Fig. 4D and E, and the other

two original images (Repeat 1 and 2) are shown (A, B). The molecular weights of SKP1, IκBα,

p65 (p-p65), β-actin, and lamin B1 are 19 kDa, 39 kDa, 65 kDa, 45 kDa, and 66 kDa, respectively.

Molecular weight markers (in thousands) are shown on the left-hand side of each blot.

Arrowheads represent the position of each immunoreactive band.

Supplementary Fig. S7. RAW264.7 cells were transfected with the miR-582-5p mimic (20 nM)

or negative control microRNA mimic (NC-miR mimic, 20 nM) for 24 h and then incubated with

or without LPS for 90 min. The cells were analyzed through immunofluorescence staining using

an anti-p65 antibody. Two sets of images of p65 immunofluorescence staining (red) are shown.

The nuclei were counterstained with DAPI (blue). Scale bar = 20 µm.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る