リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Maps preserving triple transition pseudo-probabilities (Research on preserver problems on Banach algebras and related topics)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Maps preserving triple transition pseudo-probabilities (Research on preserver problems on Banach algebras and related topics)

PERALTA, Antonio M. 京都大学

2023.07

概要

Let e and v be minimal tripotents in a JBW*-triple M. We introduce the notion of triple transition pseudo-probability from e to v as the complex number TTP(e, v) = φv(e), where φv is the unique extreme point of the closed unit ball of M∗ at which v attains its norm. In the case of two minimal projections in a von Neumann algebra, this correspond to the usual transition probability. We prove that every bijective transformation Φ preserving triple transition pseudo-probabilities between the lattices of tripotents of two atomic JBW*-triples M and N admits an extension to a bijective (complex) linear mapping between the socles of these JBW*-triples. If we additionally assume that Φ preserves orthogonality, then Φ can be extended to a surjective (complex-)linear (isometric) triple isomorphism from M onto N. In case that M and N are two spin factors or two type 1 Cartan factors we show, via techniques and results on preservers, that every bijection preserving triple transition pseudo-probabilities between the lattices of tripotents of M and N automatically preserves orthogonality, and hence admits an extension to a triple isomorphism from M onto N.

参考文献

[1] T.J. Barton, T. Dang, G. Horn, Normal representations of Banach Jordan triple systems,

Proc. Amer. Math. Soc. 102 (1988), no. 3, 551–555.

[2] T. Barton, R. M. Timoney, Weak∗ -continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), 177–191.

[3] M. Battaglia, Order theoretic type decomposition of JBW∗ -triples, Quart. J. Math. Oxford

Ser. (2) 42 (1991), no. 166, 129–147.

[4] J. Becerra Guerrero, M. Cueto-Avellaneda, F.J. Fern´

andez-Polo, A.M. Peralta, On the

extension of isometries between the unit spheres of a JBW∗ -triple and a Banach space, J.

Inst. Math. Jussieu 20 (2021), no. 1, 277–303.

[5] J. Becerra Guerrero, G. L´

opez P´erez, A. M. Peralta, A. Rodr´ıguez-Palacios, Relatively

weakly open sets in closed balls of Banach spaces, and real JB∗ -triples of finite rank, Math.

Ann. 330 (2004), no. 1, 45–58.

[6] J. Becerra Guerrero, G. L´

opez P´erez, A. Rodr´ıguez-Palacios, Relatively weakly open sets

in closed balls of C -algebras, J. London Math. Soc. 68 (2003), 753–761.

[7] R. Braun, W. Kaup, H. Upmeier, A holomorphic characterisation of Jordan-C∗ -algebras,

Math. Z. 161 (1978), 277–290.

[8] L.J. Bunce, Ch.-H. Chu, Compact operations, multipliers and Radon-Nikodym property

in JB∗ -triples, Pacific J. Math. 153 (1992), 249–265.

[9] M. Burgos, F.J. Fern´

andez-Polo, J. Garc´es, J. Mart´ınez, A.M. Peralta, Orthogonality

preservers in C∗ -algebras, JB∗ -algebras and JB∗ -triples, J. Math. Anal. Appl. 348 (2008),

220–233.

[10] G. Casinelli, E. de Vito, P. Lahti, A. Levrero, Symmetry groups in quantum mechanics

and the theorem of Wigner on the symmetry transformations, Rev. Mat. Phys. 8 (1997),

921–941.

[11] J. Chmieli´

nski, Linear mappings approximately preserving orthogonality, J. Math. Anal.

Appl. 304 (2005), no. 1, 158–169.

[12] C.-H. Chu, B. Iochum, Complementation of Jordan triples in von Neumann algebras. Proc.

Amer. Math. Soc. 108 (1990), no. 1, 19–24.

[13] G.G. Ding, The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can

be extended to a real linear isometry of the whole space, Sci. China Ser. A 45 (2002), no.

4, 479–483.

[14] C.M. Edwards, G.T. R¨

uttimann, On the facial structure of the unit balls in a JBW∗ -triple

and its predual, J. London Math. Soc. 38 (1988), 317–332.

[15] F.J. Fern´

andez-Polo, A.M. Peralta, Tingley’s problem through the facial structure of an

atomic JBW∗ -triple, J. Math. Anal. Appl. 455 (2017), 750–760.

[16] F.J. Fern´

andez-Polo, A.M. Peralta, Low rank compact operators and Tingley’s problem,

Adv. Math. 338 (2018), 1–40.

[17] Y. Friedman, Physical applications of homogeneous balls. With the assistance of Tzvi

Scarr. Progress in Mathematical Physics, 40. Birkh¨

auser Boston, Inc., Boston, MA, 2005.

Maps preserving triple transition pseudo-probabilities

27

[18] Y. Friedman, A.M. Peralta, Representation of symmetry transformations on the sets of

tripotents of spin and Cartan factors, Anal. Math. Phys. 12 (2022), no. 1, Paper No. 37,

52 pp..

[19] Y. Friedman, B. Russo, Structure of the predual of a JBW∗ -triple, J. Reine u. Angew.

Math. 356 (1985), 67–89.

[20] Y. Friedman, B. Russo, The Gelfand–Naimark theorem for JB∗ -triples, Duke Math. J.,

53 (1986), 139–148.

[21] J. Hamhalter, Dye’s theorem for tripotents in von Neumann algebras and JBW∗ -triples,

Banach J. Math. Anal. 15 (2021), no. 3, Paper No. 49, 19 pp..

[22] J. Hamhalter, O.F.K. Kalenda, A.M. Peralta, Finite tripotents and finite JBW∗ -triples,

J. Math. Anal. Appl. 490 (2020), no. 1, 124217.

[23] J. Hamhalter, O.F.K. Kalenda, A.M. Peralta, Determinants in Jordan matrix algebras, to

appear in Linear and Multilinear Algebra, 71 (2023), no. 6, 961–1002.

[24] J. Hamhalter, O.F.K. Kalenda, A.M. Peralta, Order type relations on the set of tripotents

in a JB∗ -triple, preprint 2021. arXiv: 2112.03155

[25] J. Hamhalter, O.F.K. Kalenda, A.M. Peralta, H. Pfitzner, Measures of weak noncompactness in preduals of von Neumann algebras and JBW∗ -triples, J. Funct. Anal.

278 (2020), 1, 108300.

[26] J. Hamhalter, O.F.K. Kalenda, A.M. Peralta, H. Pfitzner, Grothendieck’s inequalities

for JB∗ -triples: Proof of the Barton-Friedman conjecture, Trans. Amer. Math. Soc. 374

(2021), no. 2, 1327–1350.

[27] L.A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces.

In: Proceedings on infinite dimensional Holomorphy (Kentucky 1973); pp. 13-40. Lecture

Notes in Math. 364. Berlin-Heidelberg-New York: Springer 1974.

[28] L.A. Harris, A generalization of C∗ -algebras, Proc. London Math. Soc., 42 (1981), no. 3,

331–361.

[29] F.J. Herv´es, J.M. Isidro, Isometries and automorphisms of the spaces of spinors, Rev. Mat.

Univ. Complut. Madrid 5 (1992), no. 2-3, 193–200.

[30] O.F.K. Kalenda, A.M. Peralta, Extension of isometries from the unit sphere of a rank-2

Cartan factor, Anal. Math. Phys. 11 (2021), 15.

[31] W. Kaup, A Riemann Mapping Theorem for bounded symmentric domains in complex

Banach spaces, Math. Z. 183 (1983), 503–529.

[32] W. Kaup, On real Cartan factors, Manuscripta Math. 92 (1997), 191–222.

[33] W. Kaup, H. Upmeier, Jordan algebras and symmetric Siegel domains in Banach spaces,

Math. Z. 157 (1977), 179–200.

[34] Loos, O. Bounded symmetric domains and Jordan pairs. Lecture Notes. Univ. California

at Irvine, 1977.

[35] M. Marcus, B.N. Moyls, Transformations on tensor product spaces, Pac. J. Math. 9 (1959),

1215–1221.

[36] L. Moln´

ar, Selected Preserver Problems on Algebraic Structures of Linear Operators and

on Function Spaces, Lecture Notes in Math., vol. 1895, Springer-Verlag, Berlin, 2007.

[37] L. Moln´

ar, On certain automorphisms of sets of partial isometries, Arch. Math. (Basel)

78 (2002), no. 1, 43–50.

[38] M. Omladiˇc, P. Semrl,

Additive mappings preserving operators of rank-one, Linear Algebra

Appl. 182 (1993), 239–256.

[39] A.M. Peralta, R. Tanaka, A solution to Tingley’s problem for isometries between the

unit spheres of compact C∗ -algebras and JB∗ -triples, Sci. China Math. 62 (2019), no. 3,

28

A.M. Peralta

553–568.

[40] R. Westwick, Transformations on tensor spaces, Pacific J. Math. 23 (1967), 613–620.

[41] E.P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektrum, Fredrik Vieweg und Sohn, 1931.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る