リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Automatic screening for diabetic retinopathy in interracial fundus images using artificial intelligence (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Automatic screening for diabetic retinopathy in interracial fundus images using artificial intelligence (本文)

小澤, 信博 慶應義塾大学

2022.03.23

概要

The development of deep learning technology and high-performance computers in recent years has enabled significant improvement in the accuracy of image recognition, and efforts are currently being made toward the development of ophthalmic artificial intelligence (AI). In this study, deep learning was applied to fundus image analysis. The fundus images were automatically classified by their severity index and the recognition accuracies for Japanese and American data were compared. We trained a deep convolutional neural network and a support vector machine using a data set consisting of 35,126 open-source American clinical fundus images, which were graded for diabetic retinopathy by licensed ophthalmologists. The grading accuracy of the trained AI model was evaluated by comparison with its performance for 200 Japanese fundus images obtained at Keio University Hospital. The trained AI model exhibited a sensitivity of 81.5% and specificity of 71.9% for the American vali- dation data set, and a sensitivity of 90.8% and specificity of 80.0% for the Japanese data set. This indicates that the proposed AI program developed using American image data can be applied to fundus photographs of Japanese subjects and thus represents an interracial screening model. It can be used for screening tests and applied to telemedicine systems.

この論文で使われている画像

参考文献

[1] Morizane Y, Morimoto N, Fujiwara A, Kawasaki R, Yamashita H, Ogura Y, Shiraga F. Incidence and causes of visual impairment in Japan: the first nation-wide complete enumeration survey of newly certified visually impaired individuals. Jpn J Ophthalmol 2019;63(1):26–33. https://doi.org/10.1007/s10384-018-0623-4.

[2] Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 2017;124(7):962–9. https://doi.org/10.1016/ j.ophtha.2017.02.008.

[3] Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016; 304(6):649–56. https://doi.org/10.1001/jama.2016.17216.

[4] Gulshan V, Rajan RP, Widner K, Wu D, Wubbels P, Rhodes T, Whitehouse K, Coram M, Corrado G, Ramasamy K, Raman R, Peng L, Webster DR. Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India. JAMA Ophthalmol. 2019;137(9):987–93. https://doi.org/10.1001/ jamaophthalmol.2019.2004.

[5] Ruamviboonsuk P, Krause J, Chotcomwongse P, Sayres R, Raman R, Widner K, Campana BJL, Phene S, Hemarat K, Tadarati M, Silpa-Archa S, Limwattanayingyong J, Rao C, Kuruvilla O, Jung J, Tan J, Orprayoon S, Kangwanwongpaisan C, Sukumalpaiboon R, Webster DR. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. NPJ Digital Med 2019;2(1). https://doi.org/10.1038/s41746- 019-0099-8.

[6] Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, Wu D, Xu S, Barb S, Joseph A, Shumski M, Smith J, Sood AB, Corrado GS, Peng L, Webster DR. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology 2019;126(4):552–64. https://doi.org/10.1016/ j.ophtha.2018.11.016.

[7] Ting DSW, Cheung CYL, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia- Franco R, Yeo IYS, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Wong TY. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA - J Am Med Assoc 2017;318(22):2211–23. https://doi.org/ 10.1001/jama.2017.18152.

[8] n.d. American Academy of Ophthalmology. International Council of Ophthalmology : International Clinical Diabetic Retinopathy Disease Severity Scale. Detailed Table. Retrieved August 12, 2019, from, http://www.icoph.org/dynamic/attachments/resources/diabetic-retinopathy-detail.pdf.

[9] Abr`amoff Michael D, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, Massin P, Cochener B, Gain P, Tang L, Lamard M, Moga DC, Quellec G, Niemeijer M. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol 2013;131(3):351. https://doi.org/10.1001/ jamaophthalmol.2013.1743.

[10] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. ImageNet large scale visual recognition challenge. Int J Comput Vis 2015;115(3):211–52. https://doi.org/10.1007/s11263- 015-0816-y.

[11] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. p. 2818–26. https://doi.org/10.1109/ CVPR.2016.308.

[12] Platt J, others. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classifiers 1999;10(3):61–74.

[13] Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. ArXiv 2016. https://doi.org/10.1007/s11263-019-01228-7.

[14] Bourne RRA. Ethnicity and ocular imaging. Eye 2011;25(3):297–300. https:// doi.org/10.1038/eye.2010.187.

[15] Rochtchina E, Wang JJ, Taylor B, Wong TY, Mitchell P. Ethnic variability in retinal vessel caliber: a potential source of measurement error from ocular pigmentation?- The Sydney childhood eye study. Invest Ophthalmol Vis Sci 2008;49(4):1362–6. https://doi.org/10.1167/iovs.07-0150.

[16] Edwards M. The genetic architecture of Iris colour and surface feature variation in populations of diverse ancestry. 2016.

[17] Spichenok O, Budimlija ZM, Mitchell AA, Jenny A, Kovacevic L, Marjanovic D, Caragine T, Prinz M, Wurmbach E. Prediction of eye and skin color in diverse populations using seven SNPs. Forensic Sci Int: Genetics 2011;5(5):472–8. https:// doi.org/10.1016/j.fsigen.2010.10.005.

[18] Abr`amoff Michael David, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Opthalmol Vis Sci 2016;57(13):5200. https://doi.org/10.1167/iovs.16-19964.

[19] Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS, Prescott GJ, Sharp PF, Olson JA. The efficacy of automated “disease/no disease” grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol 2007;91(11):1512–7. https://doi.org/10.1136/bjo.2007.119453.

[20] Lin DY, Blumenkranz MS, Brothers RJ, Grosvenor DM. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography11Inter. Am J Ophthalmol 2002;134(2):204–13. https://doi.org/10.1016/S0002-9394(02) 01522-2.

[21] Agarap AF. An architecture combining convolutional neural network (CNN) and support vector machine (SVM) for image classification. http://arxiv.org/abs/171 2.03541; 2017.

[22] Choudhary M, Tiwari V, Venkanna U. An approach for iris contact lens detection and classification using ensemble of customized DenseNet and SVM. Future Generat Comput Syst 2019;101:1259–70. https://doi.org/10.1016/j.future.2019.07.003.

[23] Dang LM, Hassan SI, Suhyeon I, Sangaiah AK, Mehmood I, Rho S, et al. UAV based wilt detection system via convolutional neural networks. Sustain Comput: Informat Syst, October 2018;2017:100250. https://doi.org/10.1016/j.suscom.2018.05.010.

[24] Dong Y, Zhang Q, Qiao Z, Yang JJ. Classification of cataract fundus image based on deep learning. In: IST 2017-IEEE International Conference on Imaging Systems and Techniques, Proceedings; 2017. p. 1–5. https://doi.org/10.1109/ IST.2017.8261463. 2018-Janua.

[25] Lang R, Jia K, Feng J. Brain tumor identification based on CNN-SVM model. In: ACM International Conference Proceeding Series; 2018. p. 31–5. https://doi.org/ 10.1145/3278198.3278209.

[26] Patalas-Maliszewska J, Halikowski D. A model for generating workplace procedures using a CNN-SVM architecture. Symmetry 2019;11(9):1–15. https://doi.org/ 10.3390/SYM11091151.

[27] Peng Y, Liao M, Deng H, Ao L, Song Y, Huang W, Hua J. CNN-SVM: a classification method for fruit fL image with the complex background. IET Cyber-Phys Syst: Theor Appl 2020;5(2):1–5. https://doi.org/10.1049/iet-cps.2019.0069.

[28] Qi X, Wang T, Liu J. Comparison of support vector machine and softmax classifiers in computer vision. In: Proceedings - 2017 2nd International Conference on Mechanical, Control and Computer Engineering, ICMCCE 2017; 2018. p. 151–5. https://doi.org/10.1109/ICMCCE.2017.49. 2018-Janua.

[29] Tang Y. Deep learning using linear support vector machines. Icml 2013. http://arxi v.org/abs/1306.0239.

[30] Xue DX, Zhang R, Feng H, Wang YL. CNN-SVM for microvascular morphological type recognition with data augmentation. J Med Biol Eng 2016;36(6):755–64. https://doi.org/10.1007/s40846-016-0182-4.

[31] 2018 Census Test. United States census bureau. n.d. https://data.census.go v/cedsci/.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る