リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sulfated and non-sulfated chondroitin affect the composition and metabolism of human colonic microbiota simulated in an in vitro fermentation system」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sulfated and non-sulfated chondroitin affect the composition and metabolism of human colonic microbiota simulated in an in vitro fermentation system

Inokuma, Kentaro Sasaki, Daisuke Kurata, Kaoru Ichikawa, Megumi Otsuka, Yuya Kondo, Akihiko 神戸大学

2023.07.29

概要

Chondroitin sulfate (CS) is a family of glycosaminoglycans and have a wide range of applications in dietary supplements and pharmaceutical drugs. In this study, we evaluated the effects of several types of CS, differing in their sulfated positions, on the human colonic microbiota and their metabolites. CS (CSA, CSC, and CSE) and non-sulfated chondroitin (CH) were added into an in vitro human colonic microbiota model with fecal samples from 10 healthy individuals. CS addition showed a tendency to increase the relative abundance of Bacteroides, Eubacterium, and Faecalibacterium, and CSC and CSE addition significantly increased the total number of eubacteria in the culture of the Kobe University Human Intestinal Microbiota Model. CSE addition also resulted in a significant increase in short-chain fatty acid (SCFA) levels. Furthermore, addition with CSC and CSE increased the levels of a wide range of metabolites including lysine, ornithine, and Ile-Pro-Pro, which could have beneficial effects on the host. However, significant increases in the total number of eubacteria, relative abundance of Bacteroides, and SCFA levels were also observed after addition with CH, and the trends in the effects of CH addition on metabolite concentrations were identical to those of CSC and CSE addition. These results provide novel insight into the contribution of the colonic microbiota to the beneficial effects of dietary CS.

この論文で使われている画像

参考文献

1. López-Senra, E. et al. Impact of prevalence ratios of chondroitin sulfate (CS)-4 and -6 isomers derived from marine sources in cell

proliferation and chondrogenic differentiation processes. Mar. Drugs 18, 94. https://​doi.​org/​10.​3390/​md180​20094 (2020).

2. du Souich, P., García, A. G., Vergés, J. & Montell, E. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate.

J. Cell. Mol. Med. 13, 1451–1463 (2009).

3. Wang, S. J., Wang, Y. H. & Huang, L. C. The effect of oral low molecular weight liquid hyaluronic acid combination with glucosamine and chondroitin on knee osteoarthritis patients with mild knee pain: An 8-week randomized double-blind placebo-controlled

trial. Medicine (Baltimore) 100, e24252. https://​doi.​org/​10.​1097/​MD.​00000​00000​024252 (2021).

4. Mikami, T. & Kitagawa, H. Biosynthesis and function of chondroitin sulfate. Biochim. Biophys. Acta 1830, 4719–4733 (2013).

5. Volpi, N. Condrosulf®: Structural characterization, pharmacological activities and mechanism of action. Curr. Med. Chem. 21,

3949–3961 (2014).

6. de Abajo, F. J. et al. Risk of nonfatal acute myocardial infarction associated with non-steroidal antiinflammatory drugs, non-narcotic

analgesics and other drugs used in osteoarthritis: A nested case-control study. Pharmacoepidemiol. Drug Saf. 23, 1128–1138 (2014).

7. Morrison, L. M. Response of ischemic heart disease to chondroitin sulfate-A. J. Am. Geriatr. Soc. 17, 913–923 (1969).

8. Nakazawa, K. & Murata, K. Comparative study of the effects of chondroitin sulfate isomers on atherosclerotic subjects. Z. Alternsforsch. 34, 153–159 (1979).

9. Melgar-Lesmes, P. et al. Chondroitin sulphate attenuates atherosclerosis in ApoE knockout mice involving cellular regulation of

the inflammatory response. Thromb. Haemost. 118, 1329–1339 (2018).

10. Baici, A. et al. Analysis of glycosaminoglycans in human serum after oral administration of chondroitin sulfate. Rheumatol. Int.

12, 81–88 (1992).

Scientific Reports |

Vol:.(1234567890)

(2023) 13:12313 |

https://doi.org/10.1038/s41598-023-38849-5

www.nature.com/scientificreports/

11. Conte, A. et al. Metabolic fate of exogenous chondroitin sulfate in man. Arzneimittelforschung. 41, 768–772 (1991).

12. Shang, Q. et al. Degradation of chondroitin sulfate by the gut microbiota of Chinese individuals. Int. J. Biol. Macromol. 86, 112–118

(2016).

13. Rawat, P. S., Seyed Hameed, A. S., Meng, X. & Liu, W. Utilization of glycosaminoglycans by the human gut microbiota: participating

bacteria and their enzymatic machineries. Gut Microbes 14, 2068367. https://​doi.​org/​10.​1080/​19490​976.​2022.​20683​67 (2022).

14. Shang, Q. et al. Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide. Int. J. Biol. Macromol. 89,

489–498 (2016).

15. Sasaki, K. et al. Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a

single-batch fermentation system. PLoS ONE 12, e0180991. https://​doi.​org/​10.​1371/​journ​al.​pone.​01809​91 (2017).

16. Takagi, R. et al. A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of

prebiotics. PLoS ONE 11, e0160533. https://​doi.​org/​10.​1371/​journ​al.​pone.​01605​33 (2016).

17. Raghavan, V. & Groisman, E. A. Species-specific dynamic responses of gut bacteria to a mammalian glycan. J. Bacteriol. 197,

1538–1548 (2015).

18. Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal

symbionts. Curr. Biol. 24, 40–49 (2014).

19. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility.

Cell 167, 1339-1353.e21 (2016).

20. Ulmer, J. E. et al. Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase. J. Biol. Chem. 289, 24289–24303 (2014).

21. Rey, F. E. et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc. Natl. Acad. Sci. USA 110, 13582–13587

(2013).

22. Louis, P. & Flint, H. J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19, 29–41

(2017).

23. Horvath, T. D. et al. Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. iScience 25, 104158. https://​doi.​org/​10.​1016/j.​isci.​2022.​104158 (2022).

24. Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.

FEMS Microbiol. Lett. 294, 1–8 (2009).

25. Chambers, E. S., Preston, T., Frost, G. & Morrison, D. J. Role of gut microbiota-generated short-chain fatty acids in metabolic and

cardiovascular health. Curr. Nutr. Rep. 7, 198–206 (2018).

26. Parada Venegas, D. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for

inflammatory bowel diseases. Front. Immunol. 10, 277. https://​doi.​org/​10.​3389/​fimmu.​2019.​00277 (2019).

27. Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734. https://​doi.​org/​10.​1038/​ncomm​s7734 (2015).

28. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature

461, 1282–1286 (2009).

29. Natarajan, N. et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor

41. Physiol. Genom. 48, 826–834 (2016).

30. Pluznick, J. L. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood

pressure regulation. Proc. Natl. Acad. Sci. USA 110, 4410–4415 (2013).

31. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance

and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

32. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611.

https://​doi.​org/​10.​1038/​ncomm​s4611 (2014).

33. Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009).

34. Civitelli, R. et al. Dietary L-lysine and calcium metabolism in humans. Nutrition 8, 400–405 (1992).

35. Ho, Y. Y. et al. l-Ornithine stimulates growth hormone release in a manner dependent on the ghrelin system. Food Funct. 8,

2110–2114 (2017).

36. Miyake, M. et al. Randomised controlled trial of the effects of L-ornithine on stress markers and sleep quality in healthy workers.

Nutr. J. 13, 53. https://​doi.​org/​10.​1186/​1475-​2891-​13-​53 (2014).

37. Barkhidarian, B., Khorshidi, M., Shab-Bidar, S. & Hashemi, B. Effects of L-citrulline supplementation on blood pressure: A systematic review and meta-analysis. Avicenna J. Phytomed. 9, 10–20 (2019).

38. Khalaf, D., Krüger, M., Wehland, M., Infanger, M. & Grimm, D. The effects of oral l-arginine and l-citrulline supplementation on

blood pressure. Nutrients 11, 1679. https://​doi.​org/​10.​3390/​nu110​71679 (2019).

39. Shiraseb, F. et al. Effect of l-arginine supplementation on blood pressure in adults: A systematic review and dose-response metaanalysis of randomized clinical trials. Adv. Nutr. 13, 1226–1242 (2022).

40. Nakamura, Y., Yamamoto, N., Sakai, K. & Takano, T. Antihypertensive effect of sour milk and peptides isolated from it that are

inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78, 1253–1257 (1995).

41. Nakamura, Y. et al. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci.

78, 777–783 (1995).

42. Cicero, A. F. et al. Effect of lactotripeptides (isoleucine-proline-proline/valine-proline-proline) on blood pressure and arterial stiffness changes in subjects with suboptimal blood pressure control and metabolic syndrome: A double-blind, randomized, crossover

clinical trial. Metab. Syndr. Relat. Disord. 14, 161–166 (2016).

43. Siltari, A., Roivanen, J., Korpela, R. & Vapaatalo, H. Long-term feeding with bioactive tripeptides in aged hypertensive and normotensive rats: Special focus on blood pressure and bradykinin-induced vascular reactivity. J. Physiol. Pharmacol. 68, 407–418

(2017).

44. Chakrabarti, S. & Wu, J. Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) promote adipocyte differentiation and

inhibit inflammation in 3T3-F442A cells. PLoS ONE 10, e0117492. https://​doi.​org/​10.​1371/​journ​al.​pone.​01174​92 (2015).

45. Huttunen, M. M., Pekkinen, M., Ahlström, M. E. & Lamberg-Allardt, C. J. Long-term effects of tripeptide Ile-Pro-Pro on osteoblast

differentiation in vitro. J. Nutr. Biochem. 19, 708–715 (2008).

46. Iovu, M., Dumais, G. & du Souich, P. Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartil. 16(Suppl 3), S14–S18

(2008).

47. Mazzucchelli, R. et al. Risk of acute myocardial infarction among new users of chondroitin sulfate: A nested case-control study.

PLoS ONE 16, e0253932. https://​doi.​org/​10.​1371/​journ​al.​pone.​02539​32 (2021).

48. Takeuchi, R. et al. Effects of vibration and hyaluronic acid on activation of three-dimensional cultured chondrocytes. Arthritis

Rheum. 54, 1897–1905 (2006).

49. Sasaki, D. et al. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human

colonic microbiota structure. Sci. Rep. 8, 435. https://​doi.​org/​10.​1038/​s41598-​017-​18877-8 (2018).

50. Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencingbased diversity studies. Nucleic Acids Res. 41, e1. https://​doi.​org/​10.​1093/​nar/​gks808 (2013).

51. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. methods 13, 581–583 (2016).

Scientific Reports |

(2023) 13:12313 |

https://doi.org/10.1038/s41598-023-38849-5

Vol.:(0123456789)

www.nature.com/scientificreports/

52. Matsuki, T. et al. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl. Environ. Microbiol. 70, 167–173 (2004).

53. Rinttilä, T., Kassinen, A., Malinen, E., Krogius, L. & Palva, A. Development of an extensive set of 16S rDNA-targeted primers for

quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97, 1166–1177 (2004).

54. Yoshida, N. et al. Effect of resistant starch on the gut microbiota and its metabolites in patients with coronary artery disease. J.

Atheroscler. Thromb. 26, 705–719 (2019).

55. Ohashi, Y. et al. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol. Biosyst. 4, 135–147

(2008).

Acknowledgements

This study was partly founded by the Japan Society for the Promotion of Science (KAKENHI Grant number

20K05938) and the Japan Agency for Medical Research and Development (AMED Grant number JP21ae0121036).

Author contributions

K.I., D.S., and M.I. wrote the manuscript. D.S. and A.K. conceived and designed the experiments. D.S. operated

and analyzed the model culture system. K.K. performed the characterization and measurement of CS. M.I. and

Y.O. contributed to the metabolome analysis. D.S., M.I., and Y.O. revised the manuscript. A.K. conceived and

supervised the research. All authors read and approved the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​023-​38849-5.

Correspondence and requests for materials should be addressed to A.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

Vol:.(1234567890)

(2023) 13:12313 |

https://doi.org/10.1038/s41598-023-38849-5

10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る