リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bioactivity of prebiotics from commonly consumed vegetables and root crops under simulated gastrointestinal conditions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bioactivity of prebiotics from commonly consumed vegetables and root crops under simulated gastrointestinal conditions

Aldrine Donnasiana KILUA 帯広畜産大学

2021.06.10

概要

Introduction and Objective
The growing interest in polyphenols has led many researchers to study and confirmed its potential health attributes. Studies have reported that polyphenols are strong antioxidants, which means that they (polyphenols) can counteract oxidative stress caused by reactive oxygen species (ROS). Besides, polyphenols can alleviate the risk factors associated with heart diseases such as lowering of blood pressure and low-density lipoprotein (LDL)-bad cholesterol level. Polyphenols are very low (less than 5%) in terms of absorption in the upper gastrointestinal tract, while more than 90% exited the upper gastrointestinal tract into the large intestine and become a substrate for microbial fermentation. Speculation surrounding the non-absorbable polyphenols could be attributed to a certain role in the large intestine which requires a thorough investigation. Therefore, the main objective of the study was to investigate the biological activity polyphenols, particularly the fermentation characteristics of purple sweet potato to elucidate its potential as a healthy substrate for colonic microbiota, and thus, might be developed into functional food with health attributes associated with the host.

Materials & Methods
In Chapter 2, in vitro fermentation study was conducted by using a small-scale laboratory fermenter. Fermentation materials used were polyphenol extracts prepared from purple sweet potato. The samples were collected at 0, 6, 12, 24, and 48 h time points for the analysis of SCFA (HPLC), putrefactive products (assay kit), intestinal immunity-related substances (assay kit), and bacterial abundance (plate count and 16S rRNA gene sequencing). In chapter 3, in vivo study was conducted using Fischer 344 male rats (6 rats/ group) aiming to investigate the fermentation characteristics of polyphenols. The rats were fed the experimental diets (5% cellulose (CEL), 5% CEL + 0.2% purple sweet potato polyphenol extract (CELP), 5% CEL + 1% purple sweet potato polyphenol extract (CEHP), 5% inulin (INU), 5% INU + 0.2% purple sweet potato polyphenol extract (INLP), and 5% INU + 1 % purple sweet potato polyphenol extract (INHP)) based on a modified AIN-93G diet. Organ weights, serum, and cecal digesta were collected for biochemical, cecal biomarkers, and microbiological analyses.

Results & Discussion
Chapter 2: The in vitro fermentation study using sweet potato polyphenols (PSP) displayed the modulatory effect on the colonic microbiota in this study. The differential beneficial bacterial growth and the reduction of pathogenic bacteria were depended on the fermentability of dietary fiber, which was more effective with cellulose and could be a potential material conducive for improving the fermentation characteristics of less-fermentable dietary fiber. PSP also reduces the level of putrefactive product ( p-cresol). Thus, PSP might be a potential material for functional food ingredients that will confer health benefits to the host.
Chapter 3: Purple sweet potato polyphenol extract (PSPP) increased the serum triglyceride (TG) and HDL-C level while reducing the NH3 level. Additionally, the βdiversity of bacterial species for inulin groups (IN, INLP, and INHP) were similar to the previous study in chapter 2 by clustering together while that of cellulose groups (CE, CELP, and CEHP) were not distinctively separated as seen in the previous study in chapter 2. Besides, PSPP reduces the relative abundance of Oscillospira and Bacteroidetes while increasing the relative abundance of Dorea. The production of acetate and succinate were increased particularly with lower PSPP concentration, while iso-butyrate was reduced. Further, the level of pH was reduced by PSPP while mucin was increased by PSPP in the CELP group. In this chapter, it seems PSPP was more effective with the less fermentable dietary fiber (cellulose) as seen in the previous study in chapter 2. Finally, the fermentation characteristics of PSPP may have different effects on the microbiota depending on the fermentability of dietary fiber associated with it. Therefore, this study demonstrated that dietary inclusion of polyphenol/anthocyanin from the purple sweet potato might confer positive health attributes to the host gut.

この論文で使われている画像

参考文献

1. Vinson, J.A.; Su, X.; Zubik, L.; Bose, P. Phenol antioxidant quantity and quality in foods: Fruits. J. Agric.Food Chem. 2001, 49, 5315–5321.

2. Tomás-Barberán, F.A.; Espin, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2000, 81, 853–876.

3. Haslam, E. Plant polyphenols (syn. vegetable tannins) and chemical defense-A reappraisal. J. Chem. Ecol. 1998, 14, 1789–1805.

4. Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883.

5. Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481-504.

6. Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317-333.

7. Cheynier, V. Polyphenols in foods are more complex than often thought. Am. J. Clin. Nutr. 2005, 81, 223S-229S.

8. Duynhoven, J.V.; Vaughan, E.E.; Jacobs, D.M.; Kemperman, R.A.; Velzen, E.J.J.V.; Gross, G.; Roger, L.C.; Possemiers, S.; Smilde, A.K.; Doré, J.; Westerhuis, J.A.; de Wiele T.V. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA. 2011, 108, 4531–4538.

9. Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct. 2015, 6, 1399–1417.

10. Balentine, D.A.; Albano, M.C.; Nair, M.G. Role of medicinal plants, herbs and spices in protecting human health. Nutrition Reviews. 1999, 7: S41-S45.

11. Kurulich, A.C.; Tsau, G.J.; Brown, A.; Howard, L.; Klein, B.P.; Jeffery, E.H.; Kushad, M.; Wallig, M.A.; Juvik, J.A. Carotene, tocopherol and ascorbate contents in subspecies of Brassical oleracea. J. Agric. Food Chem. 1999, 47, 1576-1581.

12. Milner, J.A. Reducing the risk of cancer. In functional foods: Designer foods, pharmafoods, nutraceuticals; Goldberg, I, Ed.; Chapman & Hall: New York, NY, USA, 1994, 39-70.

13. Duthie, G.G.; Brown, K.M. Reducing the risk of cardiovascular disease. In Functional Foods: Designer Foods, Pharmafoods, Nutraceuticals; Goldberg, I., Ed.; Chapman & Hall: New York, NY, USA, 1994, 19-38.

14. Gu, Y.Y.; Yu, S.; Park, J.Y.; Kevin, H.; Joshua, D.L. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice. J Nutr Biochem. 2014, 25, 439–445.

15. Manach, C.; Scalbert, A.; Morand, C.; Jiménez, L.; Rémésy, C. Polyphenols: Food sources and bioavailability. Am J Clin Nutr. 2004, 79, 727–747.

16. Peng, Y.; Yan, Y.; Wan, P.; Chen, D.; Ding, Y.; Ran, L.; Mi, J.; Lu, L.; Zhang, Z.; Li, X.; Zeng, X.; Cao, Y. Gut microbiota modulation and anti-inflamatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate- induced colitis in mice. Free Radical Biol. Med. 2019, 136, 96-108

17. Jiao, X.; Wang, Y.; Lin, Y.; Lang, Y.; Li, E.; Zhang, X.; Zhang, Q.; Feng, Y.; Meng, X.; Li, B. Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota. J Nutr Biochem. 2019, 64, 88-100.

18. Lee, H.C.; Jenner, A.M.; Low, C.S.; Lee, Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 2006, 157, 876–884.

19. Goto, K.; Kanaya, S.; Nishikawa, T.; Hara, H.; Terada, A.; Ishigami, T.; Hara, Y. The effects of tea catechins on fecal flora of elderly residents in long-term care facilities. J. Nutr. Sci. Vitaminol. (Tokyo). 1999, 45, 135–141.

20. Taira, T.; Yamaguchi, S.; Takahashi, A.; Okazaki, Y.; Yamaguchi, A.; Sakaguchi, H.; Chiji, H. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. J Clin Biochem Nutr. 2015, 57, 212-216.

21. Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord. 2013, 12, 43.

22. D'Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita. 2007, 43, 348- 361.

23. Goutzourelas, N.; Stagos, D.; Spanidis, Y.; Liosi, M.; Apostolou, A.; Priftis, A.; Haroutounian, S.; Spandidos, D.A.; Tsatsakis, A.M.; Kouretas, D. Polyphenolic composition of grape stem extracts affects antioxidant activity in endothelial and muscle cells. Mol. Med. Rep. 2015, 12, 5846-5856

24. M. Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288-306.

25. Martin, K.; Appel, C.L. Polyphenols as dietary supplements: a double-edged sword. Nutr. Diet. Suppl. 2010, 2, 1-12.

26. Sahpazidou, D.; Geromichalos, G.D.; Stagos, D.; Apostolou, A.; Haroutounian, S.A.; Tsatsakis, A.M.; Tzanakakis, G.N.; Hayes, A.W.; Kouretas, D. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells. Toxicol. Lett. 2014, 230, 218-224.

27. Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and Glycemic Control. Nutrients 2016, 8, 17.

28. Azzini, E.; Giacometti, J.; Russo, G.L. Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxid Med Cell Longev. 2017, 2017, 2740364.

29. Grosso, G.; Stepaniak, U.; Micek, A.; Kozela, M.; Stefler, D.; Bobak, M.; Pajak, A. Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study. Br J Nutr. 2017, 118, 60-68.

30. Xiao, J.B.; Högger, P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem. 2015, 22, 23-38.

31. Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017, 61, 1361779.

32. Hunter, P. The inflammation theory of disease. The growing realization that chronic inflammation is crucial in many diseases opens new avenues for treatment. EMBO Rep. 2012, 13, 968-970.

33. Tangney, C.C.; Rasmussen, H.E. Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep. 2013, 15, 324.

34. Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev. 2016, 2016, 7432797.

35. Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol health effects on cardiovascular and neurodegenerative disorders: A review and meta-analysis. Int J Mol Sci. 2019, 20, 351.

36. Cheng, Y.C.; Sheen, J.M.; Hu, W.L.; Hung, Y.C. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. Oxid Med Cell Longev. 2017, 2017, 8526438.

37. Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016, 8, 515.

38. Madigan, M.; Karhu, E. The role of plant-based nutrition in cancer prevention. J Unexplored Med Data. 2018, 3, 9.

39. Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017, 57, 3640-3649.

40. Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti- inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33-42.

41. Hui, C.; Qi, X.; Qianyong, Z.; Xiaoli, P.; Jundong, Z.; Mantian, M. Flavonoids, flavonoid subclasses and breast cancer risk: A meta-analysis of epidemiologic studies. PLoS ONE 2013, 8, e54318.

42. Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016, 8, 552.

43. Wang, J.; Tang, L.; Wang, J.S. Biomarkers of dietary polyphenols in cancer studies: Current evidence and beyond. Oxid Med Cell Longev. 2015, 2015, 732302.

44. Laparra, J.M.; Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res. 2010, 61, 219-225.

45. Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. 2015, 2015, 905215.

46. Pacheco-Ordaz.; Wall-Medrano, A.; Goñi, M.G.; Ramos-Clamont-Montfort, G.; Ayala- Zavala, J.F.; González-Aguilar, G.A. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Lett Appl Microbiol. 2018, 66, 25-31.

47. Dryden, G.W.; Song, M.; McClain, C. Polyphenols and gastrointestinal diseases. Curr Opin Gastroenterol. 2006, 22, 165-170.

48. Parkar, S.G.; Trower, T.M.; Stevenson, D.E. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe 2013, 23, 12-19.

49. Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638.

50. Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Under-standing a hidden metabolic organ. Ther. Adv. Gastroenterol. 2013, 6, 295–308.

51. Gronlund, M.M.; Lehtonen, O.P.; Eerola, E.; Kero, P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999, 28, 19–25.

52. Mountzouris, K.C.; McCartney, A.L.; Gibson, G.R. Intestinal microflora of human infants and current trends for its nutritional modulation. Br J Nutr. 2002, 87, 405–420.

53. Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; van den Brandt, P.A.; Stobberingh, E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006, 118, 511–521.

54. Salminen, S.; Gibson, G.R.; McCartney, A.L.; Isolauri, E. Influence of mode of delivery on gut microbiota composition in seven-year-old children. Gut 2004, 53, 1388–1389.

55. Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010, 107, 11971– 11975.

56. Xu, J.; Gordon, J.I. Inaugural Article: Honor thy symbionts. Proc Natl Acad Sci USA. 2003, 100, 10452–10459.

57. Saarela, M.; Lähteenmäki, L.; Crittenden, R.; Salminen, S.; MattilaSandholm, T. Gut bacteria and health foods—the European perspective. Int J Food Microbiol. 2002, 78, 99– 117.

58. Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013, 18, 1818–1892.

59. Vaiserman, A.M.; Koliada, A.K.; Marotta, F. Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res. Rev. 2017, 35, 36–45.

60. Sonnenburg, J.L.; Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism, Nature 2016, 535, 56–64.

61. Pompei, A.; Cordisco, L.; Raimondi, S.; Amaretti, A.; Pagnoni, U.M.; Matteuzzi, D.; Rossi, M. In vitro comparison of the prebiotic effect of two inulin-type fructans. Anaerobe 2008, 14, 280–286.

62. van de Wiele, T.; Boon, N.; Possemiers, S.; Jacobs, H; Verstraete, W. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol. 2007, 102, 452-460.

63. De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010, 107, 14691–14696.

64. Chen, T.; Chen, D.; Tian, G.; Zheng, P.; Mao, X.; Yu, J.; He, J.; Huang, Z.; Luo, Y.; Luo, J.; Yu, B. Soluble fiber and insoluble fiber regulate colonic microbiota and barrier function in a piglet model. Biomed Res Int. 2019, 2019, 7809171.

65. Kawabata, K.; Yoshioka, Y.; Terao, J. (2019). Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019, 24, 1– 25.

66. Mojzer, E.B.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 1–38.

67. Marsilio, V.; Lanza, B. Characterization of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. J Sci Food Agric. 1998, 76, 520–524.

68. Rozès, N.; Peres, C. Effects of phenolic compounds on the growth and the fatty acid composition of Lactobacillus plantarum. Appl Microbiol Biotechnol. 1998, 49, 108–111.

69. Salih, A.G; Le Quéré, J.M; Drilleau, J.F. Action des acides hydroxycinnamiques libres et esterifies sur la croissance des bactéries lactiques. Sci des Aliments. 2000, 20, 537–560.

70. Rodríguez-Daza, M.C.; Daoust, L.; Boutkrabt, L.; Pilon, G.; Varin, T.; Dudonné, S.; Levy, É.; Marette, A.; Roy, D.; Desjardins, Y. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high- fat high-sucrose fed mice. Sci Rep. 2020, 10, 2217.

71. Lee, S.; Keirsey, K.I.; Kirkland, R.; Grunewald, Z.I.; Fischer, J.G.; de La Serre, C.B. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. J Nutr. 2018, 148, 209-219.

72. Neyrinck, A.M.; Catry, E.; Taminiau, B.; Cani, P.D; Bindels, L.B.; Daube, G.; Dessy, C.; Delzenne, N.M. Chitin–glucan and pomegranate polyphenols improve endothelial dysfunction. Sci Rep. 2019, 9, 14150.

73. Fotschki, B.; Juskiewicz, J.; Jurgonski, A.; Kolodziejczyk, K.; Milala, J.; Kosmala, M.; Zdunczyk, Z. Anthocyanins in strawberry polyphenolic extract enhance the beneficial effects of diets with fructooligosaccharides in the rat cecal environment. PLoS ONE 2016, 11, e0149081

74. Peng, Y.; Yan, Y.; Wan, P.; Dong, W.; Huang, K.; Ran, L.; Mi, J.; Lu, L.; Zeng, X.; Cao, Y. Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo. Food Res Int. 2019, 130, 108952.

75. Patterson, E.; Cryan, J.F.; Fitzgerald, G.F.; Ross, R.P.; Dinan, T.G.; Stanton, C. Gut microbiota, the pharmabiotics they produce and host health. Proc Nutr Soc. 2014, 73, 477– 89.

76. Hague, A.; Elder, D.J.; Hicks, D.J.; Paraskeva, C. Apoptosis in colorectal tumour cells: Induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate, Int. J. Cancer. 1995, 60, 400–406.

77. Abrahamse, S.L.; Pool-Zobel, B.L.; Rechkemmer, G. Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells, Carcinogenesis 1999, 20, 629–634.

78. Wong, J.M.; de Souza, R.; Kendall, C.W.; Emam, A.; Jenkins, D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243.

79. Robles Alonso, V.; Guarner, F. Linking the gut microbiota to human health, Br. J. Nutr. 2013, 109, 21–26.

80. Li, J.; Wu, T.; Li, N.; Wang, X.; Chen, G.; Lyu, X. Bilberry anthocyanin extract promtes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food Funct. 2019, 22, 333–343.

81. Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhao, Y.; Zhu, H.; Liang, N.; Ma K.Y.; Lei, L.; He, W.S.; Chen, Z. Y. Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food Funct. 2019, 10, 2847–2860.

82. Liu, J.; Yue, S.; Yang, Z.; Feng, W.; Meng, X.; Wang, A.; Peng, C.; Wang, C.; Yan, D. Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacol Res. 2018, 134, 40–50.

83. Henning, S.M.; Yang, J.; Hsu, M.; Lee, R.P.; Grojean, E.M.; Ly, A.; Tseng, C.H.; Heber, D.; Li, Z. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur J Nutr. 2018, 57, 2759–2769.

84. Zhu, X.L; Zhang, X; Sun, Y; Su, D.; Sun, Y.; Hu, B.; Zeng, X.X. Purification and fermentation in vitro of sesaminol triglucoside from sesame cake by human intestinal microbiota. J Agric Food Chem. 2013, 61, 1868–1877.

85. Larrosa, M.; Yañéz-Gascón, M.J.; Selma, M.V.; González-Sarrías, A.; Toti, S.; Cerón, J.J.; Tomas-Barberán, F.; Dolara, P.; Espín, J.C. Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J Agr Food Chem. 2009, 57, 2211–2220.

86. Sanz, M.L.; Côté, G.L.; Gibson, G.R.; Rastall, R.A. Prebiotic properties of alternansucrase maltose-acceptor oligosaccharides. J Agric Food Chem. 2005, 53, 5911–5916.

87. Sanz, M.L.; Polemis, N.; Morale,s V.; Corzo, N.; Drakoularakou, A.; Gibson, G.R.; Rastall, R.A. In vitro investigation into the potential prebiotic activity of honey oligosaccharides. J Agric Food Chem. 2005, 53, 2914–2921.

88. Dominika, S.; Arjan, N.; Karyn, R.P.; Henryk, K. The study on the impact of glycated pea proteins on human intestinal bacteria. Int J Food Microbiol. 2011, 145, 267–272.

89. Kosmala, M.; Zduńczyk, Z.; Kołodziejczyk, K.; Klimczak, E.; Juśkiewicz, J.; Zduńczyk, P. Chemical composition of polyphenols extracted from strawberry pomace and their effect on physiological properties of diets supplemented with different types of dietary fibre in rats. Eur J Nutr. 2014, 53, 521–532.

90. Negi, P.S.; Jayaprakasha, G.K. Antibacterial activity of grapefruit (Citrus paradisi) peel extract. Eur Food Res Technol. 2001, 213, 484–487.

91. Zduńczyk, Z.; Juśkiewicz, J.; Estrella, I. Cecal parameters of rats fed diets containing grapefruit polyphenols and inulin as single supplements or in a combination. Nutrition 2006, 22, 898–904.

92. Wallace, A.J.; Eady, S.L.; Hunter, D.C.; Skinner, M.A.; Huffman, L.; Ansell, J.; Blatchford, P.; Wohlers, M.; Herath, T.D.; Hedderley, D.; Rosendale, D.; Stoklosinski, H.; McGhie, T.; Sun-Waterhouse, D.; Redman, C. No difference in fecal levels of bacteria or short chain fatty acids in humans, when consuming fruit juice beverages containing fruit fiber, fruit polyphenols, and their combination. Nutr Res. 2015, 35, 23–34.

93. Etxeberria, U.; Arias, N.; Boqué, N.; Macarulla, M.; Portillo, M.; Martínez, J.; Milagro, F. Reshaping faecal gut microbiota composition by the intake of trans‐ resveratrol and quercetin in high‐fat sucrose diet‐fed rats. J Nutr Biochem. 2015, 26, 651–660.

94. An, C.; Kuda, T.; Yazaki, T.; Takahashi, H.; Kimura, B. Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Appl Microbiol Biotechnol. 2014, 98, 2779–2787.

95. Macfarlane, G.T.; Macfarlane, S. Human colonic microbiota: Ecology, physiology and metabolic potential of intestinal bacteria. Scand. J. Gastroenterol. Suppl. 1997, 222, 3–9.

96. Windey, K.; Preter, D.; Verbeke, K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012, 56, 184–196.

97. Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tomé, D. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Parmacol. Res. 2013, 68, 95–107.

98. Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.V.; Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907.

99. Brocca, A.; Virzì, G.M.; de Cal, M.; Cantaluppi, V.; Ronco, C. Cytotoxic effects of p- cresol in renal epithelial tubular cells. Blood Purif. 2013, 36, 219–225.

100. Ma, N.; Tian, Y.; Wu, Y.; Ma, X. Contributions of the Interaction between Dietary Protein and Gut Microbiota to Intestinal Health. Curr. Protein Pept. Sci. 2017, 18, 1.

101. Zhao, J.; Zhang, X.; Liu, H.; Brown, M.A.; Qiao, S. Dietary Protein and Gut Microbiota Composition and Function. Curr. Protein Pept. Sci. 2019, 20, 145–154.

102. Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. The Lancet 1993, 342, 1007–1011.

103. Arts I.C.W.; Hollman, P.C.H. “Polyphenols and disease risk in epidemiologic studies,” Am J Clin Nutr. 2005, 81, 317S–325S.

104. Yamakoshi, J.; Tokutake, S.; Kikuchi, M.; Kubota, Y.; Konishi, H.; Mitsuoka, T. Effect of proantocyanidin -rich extract from grape seed on human fecal flora and fecal odor. FASEB Journal. 2001, 15, 633.

105. Jurgoński, A.; Juśkiewicz, J.; Zduńczyk, Z.; Matusevicius, P.; Kołodziejczyk, K. Polyphenol-rich extract from blackcurrant pomace attenuates the intestinal tract and serum lipid changes induced by a high-fat diet in rabbits. Eur. J. Nutr. 2014, 53, 1603–1613.

106. Nagata, R.; Echizen, M.; Yamaguchi, Y.; Han, K.H.; Shimada, K.; Ohba, K.; Kitano-Okada, T.; Nagura, T.;Uchino, H.; Fukushima, M. Effect of a combination of inulin and polyphenol containing adzuki bean extract on intestinal fermentation In Vitro and In Vivo. Biosci. Biotechnol. Biochem. 2018, 82, 489–496.

107. Bilić-Šobot, D.; Zamaratskaia, G.; Rasmussen, M.K.; Čandek-Potokar, M.; Škrlep, M.; Maja Prevolnik Povše, M.; Dejan Škorjanc, D. Chestnut wood extract in boar diet reduces intestinal skatole production, a boar taint compound. Agron. Sustain. Dev. 2016, 36, 62.

108. Belkaid, Y.; Harrison, O.J. Homeostatic immunity and the microbiota. Immunity 2017, 46, 562-576.

109. Chen, Y.E.; Fischbach.; MA.; Belkaid, Y. Skin microbiota-host interactions. Nature 2018, 553, 427-436.

110. Wells, J.M.; Rossi, O.; Meijerink, M.; van Baarlen, P. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A. 2011, 108, 4607-4614.

111. Tanabe, H.; Morita, T.; Sugiyama, K.; Kiriyama, S. Dietary high-amylose cornstarch enhances mucin and mmunoglobulin A secretions in rat gastrointestinal tract. J. Jpn. Assoc. Dietary Fiber Res. 2004, 8, 31-42.

112. Beukema, M.; Faas, M.M.; de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Exp Mol Med. 2020, 52, 1364–1376.

113. Desai, M.S; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; Young, V.B.; Henrissat, B.; Wilmes, P.; Stappenbeck, T.S.; Núñez, G.; Martens, E.C. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016, 167, 1339-1353.

114. Szliszka, E.; Krol, W. The role of dietary polyphenols in tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis for cancer chemoprevention. Eur J Cancer Prev. 2011, 20, 63–69.

115. Johansson, M.E.; Phillipson, M.; Petersson, J.; Velcich, A.; Holm, L.; Hansson, G.C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A. 2008, 105, 15064-15069.

116. Johansson, M.E.; Hansson, G.C. Mucus and the goblet cell. Dig Dis. 2013, 31, 305-309.

117. Pelaseyed, T.; Bergström, J.H.; Gustafsson, J.K.; Ermund, A.; Birchenough, G.M.; Schütte, A.; van der Post, S.; Svensson, F.; Rodríguez-Piñeiro, A.M.; Nyström, E.E.; Wising, C.; Johansson, M.E.; Hansson, G.C. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014, 260, 8–20.

118. Sakata, T.; Setoyama, H. Local stimulatory effect of short chain fatty acids on the mucus release from the hindgut mucosa of rats (Rattus norvegicus). Comp Biochem Physiol A Physiol. 1995, 111, 429–432.

119. Shimotoyodome, A.; Meguro, S.; Hase,T.; Tokimitsu, I.; Sakata, T. Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp Biochem Physiol A Mol Integr Physiol. 2000, 125, 525–531.

120. Dohrman, A.; Miyata, S.; Gallup, M.; Li, J.D.; Chapelin, C.; Coste, A.; Escudier, E.; Nadel, J.; Basbaum, C. Biochim. Biophys. 1998, 1406, 251–259.

121. Carasi, P.; Racedo, S.M.; Jacquot, C.; Romanin, D.E.; Serradell, M.A.; Urdaci, M.C. Impact of kefir derived lactobacillus kefiri on the mucosal immune response and gut microbiota. J Immunol Res. 2015, 2015, 1–12.

122. Rosillo, M.A.; Sanchez-Hidalgo, M.; Cardeno, A.; ´Alarcon de la Lastra, C. Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn’s disease. Biochem Pharmacol. 2011, 82, 737–745.

123. Guri, A.; Li, Y.; Corredig, M. Interfacial dilational properties of tea polyphenols and milk proteins with gut epithelia and the role of mucus in nutrient adsorption. Food Funct. 2015, 6, 3642–3651.

124. Georgiades, P.; Pudney, P.D.A.; Rogers, S.; Thornton, D.J.; Waigh, T.A. Tea derived galloylated polyphenols crosslink purified gastrointestinal mucins. PLoS ONE 2014, 9, e105302.

125. Lakhanpal, D.P.; Rai, D.D.K. Quercetin: a versatile flavonoid. EJOURNAL. 2007, 2, 20–35.

126. Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem. 2009, 57, 6485–6501.

127. Fotschki, B.; Milala, J.; Jurgoński, A.; Karlińska, E.; Zduńczyk, Z.; Juśkiewicz, J. Strawberry ellagitannins thwarted the positive effects of dietary fructooligosaccharides in rat cecum. J Agric Food Chem. 2014, 62, 5871–5880.

128. Breedveld, A.; van Egmond, M. IgA and FcαRI: Pathological roles and therapeutic opportunities. Front Immunol. 2019, 10, 553.

129. Mkaddem, S.B.; Christou, I.; Rossato, E.; Berthelot, L.; Lehuen, A.; Monteiro, R.C. IgA, IgA receptors, and their anti-inflammatory properties. Curr Top Microbiol Immunol. 2014, 382, 221-235.

130. Mestecky, J.; McGhee, R. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol. 1987, 40, 153-245.

131. Woof, J.M.; Mestecky J. Mucosal immunoglobulins. Immunol Rev. 2005, 64-82.

132. Mora, J.R.; von Andrian, U.H. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 2008, 1, 96–102.

133. Corthésy, B. Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol. 2010, 5, 817-29.

134. Yazdani, R.; Azizi, G.; Abolhassani, H.; Aghamohammadi, A. Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scand J Immunol. 2017, 85, 3-12.

135. Vo Ngoc, D.T.; Krist, L.; van Overveld, F.J.; Rijkers, G.T. The long and winding road to IgA deficiency: causes and consequences. Expert Rev Clin Immunol. 2017, 13, 371-382.

136. Ballow, M. Primary immunodeficiency disorders: antibody deficiency. J Allergy Clin Immunol. 2002, 109, 581-591.

137. Aghamohammadi, A.; Cheraghi, T.; Gharagozlou, M.; Movahedi, M.; Rezaei, N.; Yeganeh, M.; Parvaneh, N.; Abolhassani, H.; Pourpak, Z.; Moin, M. IgA deficiency: correlation between clinical and immunological phenotypes. J Clin Immunol. 2009, 29, 130-136.

138. Kawamoto, S.; Maruya, M.; Kato, L.M.; Suda, W.; Atarashi, K.; Doi, Y.; Tsutsui, Y.; Qin, H.; Honda K.; Okada, T.; Hattori, M.; Fagarasan, S. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity, 2014, 41, 152-165.

139. Okazaki, Y.; Han, Y.; Kayahara, M.; Watanabe, T.; Arishige, H.; Kato, N. Consumption of curcumin elevates fecal immunoglobulin A, an index of intestinal immune function, in rats fed a high-fat diet. J Nutr Sci Vitaminol (Tokyo). 2010, 56, 68-71.

140. Williams, A.R.; Krych, L.; Ahmad, H.F.; Nejsum, P.; Skovgaard, K.; Nielsen, D.S.; Thamsborg, S.M. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS ONE 2017, 12, e0186546.

141. Alvarez-Cilleros, D.; Ramos, S.; Lopez-Oliva, M.E.; Escriva, F.; Alvarez, C.; Fernandez- Millan, E.; Martin, M.A. Cocoa diet modulates gut microbiota composition and improves intestinal health in Zucker diabetic rats. Food Res. Int. 2020, 132, 109058.

142. Xu, J.; Su, X.; Lim, S.; Griffin, J.; Carey, E. Characterization and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chem. 2015, 186, 90-96.

143. Yildirim, Z.; Tokusoglu, O.; Ozturk, G. Determination of sweet potato (Ipomoea batatas (L.) Lam) genotypes suitable to the Aegean region of Turkey. Turkish J F Crop. 2011. 16, 48-53.

144. Yildirim, T.Z.; Durucasu, I. Nutraceutical phenolics (total polyphenols, chlorogenic (5-O- Caffeoylquinic) acid) in tubers, leaves, stalks and stems of new developed sweet potato (Ipomea Batatas L): Alterations in tubers during short-term storage. J Food Technol. 2005, 3, 444-448.

145. Austin, D.F. The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. In P. Gregory (ed.), Exploration, maintenance and utilization of sweet potato genetic resources. CIP, Lima, Peru, 1988, 27-60.

146. Yen, D.E. Sweet potato in historical perspective. In: R.L. Villareal and T.D. Griggs, eds. Sweet potato: Proceedings of the first international symposium. AVRDC, Tainan, Taiwan. 1982, 17-30.

147. Bottema, T. Rapid market appraisal, issues and experience with sweet potato in Vietnam. In Scott, G., S. Wiersema, and P. I. Ferguson (eds.) Product Development for root and tuber crops. International Potato Center, Lima, Peru. 1992, 1.

148. Miranda, J.E.C. 2002. Batata-doce. Available from: www.cnph.embrapa.br/cultivares/bat- doce.htm.

149. Goodman.; Grant, K. Japan and the Dutch 1600-1853. London: Routledge. 2013, 66–67.

150. Gunn.; Geoffrey, C. First Globalization: The Eurasian Exchange, 1500-1800. The Sixteenth Century Journal. 2003, 36, 932–933.

151. Obrien.; Patricia, J. The sweet potato: Its origin and dispersal. Am. Anthropol. 1972, 74, 342–365.

152. Itoh, M. The storied history of the potato in Japanese cooking. The Japan times. 2017.

153. Jung, J.K.; Lee, S.U.; Kozukue, N.; Levin, C.E.; Friedman, M. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in-home processed roots. J Food Compos Anal. 2011, 24, 29-37.

154. Yamakawa, O.; Suda, I.; Yoshimoto, M. Development and utilization of sweet potato cultivars with high anthocyanin content. Foods Food Ingredients J. Jpn. 1998, 178, 69–78.

155. Gould, K.; Davies, K.; Winefield, C. Anthocyanins: biosynthesis, functions, and applications. Springer 2008, 1, 1-345.

156. Truong, V.D.; Deighton, N.; Thompson, R.L.; McFeeters, R.F.; Dean, L.O.; Pecota, K. V., Yencho, G.C. Characterization of anthocyanins and anthocyanidins in purple fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS. J Agric Food Chem. 2010, 58, 404–410.

157. Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, E.; Rodríguez, J.A.; AndrésGalán-Vidal, C. Chemical studies of anthocyanins: a review. Food Chem. 2009, 113, 859–871.

158. Ikuo, S; Tomoyuki, O.; Mami, M.; Mio, K.; Yoichi, N.; Shu, F. Physiological functionality of purple-fleshed sweet potatoes containing anthocyanins and their utilization in foods. JARQ. 2003, 37, 167-173.

159. Srinivasan, V.S. Bioavailability of nutrients: A practical approach to in vitro demonstration of the availability of nutrients in multivitamin-mineral combination products. J Nutr. 2001, 131, 1349–1350.

160. McGhie, T.K.; Walton, M.C. The bioavailability and absorption of anthocyanins: Towards a better understanding. Mol Nutr Food Res. 2007, 51, 702-713.

161. Gomez-Rico, A.; Salvador, M.D.; La Greca, M.; Fregapane, G. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management. J. Agric. Food Chem. 2006, 54, 7130–7136.

162. Gomez-Alonso, S.; Fregapane, G.; Salvador, M.D.; Gordon, M.H. Changes in phenolic composition and antioxidant activity of virgin olive oil during frying. J. Agric. Food Chem. 2003, 51, 667–672.

163. Andrikopoulos, N.K.; Dedoussis, G.V.; Falirea, A.; Kalogeropoulos, N.; Hatzinikola, H.S. Deterioration of natural antioxidant species of vegetable edible oils during the domestic deep-frying and pan-frying of potatoes. Int. J. Food Sci. Nutr. 2002, 53, 351–363.

164. Gliszczynska-Swiglo, A.; Tyrakowska, B. Quality of commercial apple juices evaluated on the basis of the polyphenol content and the TEAC antioxidant activity. J. Food Sci. 2003, 68, 1844–1849.

165. Mullen, W.; Stewart, A.J.; Lean, M.E.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. J. Agric. Food Chem. 2002, 50, 5197–5201.

166. Vallejo, F.; Tomas-Barberan, F.; Garcia-Viguera, C. Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J. Agric. Food Chem. 2003, 51, 3029–3034.

167. Donovan, J.L.; Kasim-Karakas, S.; German, J.B.; Waterhouse, A.L. Urinary excretion of catechin metabolites by human subjects after red wine consumption. Br. J. Nutr. 2002, 87, 31–37.

168. Nurmi, T.; Mursu, J.; Heinonen, M.; Nurmi, A.; Hiltunen, R.; Voutilainen, S. Metabolism of berry anthocyanins to phenolic acids in humans. J. Agric. Food Chem. 2009, 57, 2274– 2281.

169. Frank, T.; Netzel, M.; Strass, G.; Bitsch, R.; Bitsch, I. Bioavailability of anthocyanidin-3- glucosides following consumption of red wine and red grape juice. Can J Physiol Pharmacol. 2003, 81, 423–435.

170. Bub, A.; Watzl, B.; Heeb, D.; Rechkemmer, G.; Briviba, K. Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur J Nutr. 2001, 40, 113–120.

171. Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remesy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005, 81, 230-242.

172. Kay, C.D.; Pereira-Caro, G.; Ludwig, I.A.; Clifford, M.N.; Crozier, A. Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annu Rev Food Sci Technol. 2017, 8, 35.

173. Wang, H.; Cao, G.; Prior, R.L. Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem. 1997, 45, 304 –309.

174. Tsuda, T.; Horio, F.; Osawa, T. The role of anthocyanins as an antioxidant under oxidative stress in rats. Biofactors 2000, 13, 133 –139.

175. Hagiwara, A.; Yoshino, H.; Ichihara, T.; Kawabe, M.; Tamano, S.; Aoki, H.; Koda, T.; Nakamura, M.; Imada, K.; Ito, N.; Shirai, T. Prevention by natural food anthocyanins, purple sweet potato color and red cabbage color, of 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP)-associated colorectal carcinogenesis in rats initiated with 1,2- dimethylhydrazine. J. Toxicol. Sci. 2002, 27, 57–68.

176. Matsumoto, H.; Nakamura, Y.; Tachibanaki, S.; Kawamura, S.; Hirayama, M. Stimulatory effect of cyanidin 3-glucosides on the regeneration of rhodopsin. J. Agric. Food Chem. 2003, 51, 3560–3563.

177. Ghiselli, A.; Nardini, M.; Baldi, A.; Scaccini, C. Antioxidant activity of different phenolic fractions separated from an Italian red wine. J. Agric. Food Chem. 1998, 46, 361–367.

178. Omenn, G.S. What accounts for the association of vegetables and fruits with lower incidence of cancers and coronary heart diseases? Ann Epidemiol. 1995, 5, 333 – 335.

179. Stintzing, F.C.; Stintzing, A.S.; Carle, R.; Frei, B.; Wrolstad, R.E. Color and antioxidant properties of cyanidin-based anthocyanin pigments. J Agric Food Chem. 2002, 50, 6172– 6181.

180. Roewer, N.; Broscheit, J. Delphinidin for combating melanoma cells. U.S. Patent Application No. 14/651, 2013, 262.

181. Tsuda, T.; Shiga, K.; Ohshima, K.; Kawakishi, S.; Osawa, T. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochemical Pharmacol. 1996, 52, 1033–1039.

182. Kang, M.K.; Lim, S.S.; Lee, J.Y.; Yeo, K.M.; Kang, Y.H. Anthocyanin-rich purple corn extract inhibits diabetes-associated glomerular angiogenesis. Plos One 2013, 8, e79823.

183. Roy, S.; Khanna, S.; Alessio, H.M.; Vider, J.; Bagchi, D.; Bagchi, M.; Sen, C.K. Anti- angiogenic property of edible berries. Free Rad Res. 2002, 36, 1023–1032.

184. Matsunaga, N.; Tsuruma, K.; Shimazawa, M.; Yokota, S.; Hara, H. Inhibitory actions of bilberry anthocyanidins on angiogenesis. Phytother Res. 2010, 24, 42–47.

185. Stein, J.H.; Keevil, J.G.; Wiebe, D.A.; Aeschlimann, S.; Folts, J.D. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 1999, 100, 1050–1055.

186. Keevil, J.G.; Osman, H.E.; Reed, J.D.; Folts, J.D. Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. J. Nutr. 2000, 130, 53–56.

187. Heinonen, I.M.; Lehtonen, P.J.; Hopia, A.I. Antioxidant activity of berry and fruit wines and liquors. J. Agric. Food Chem. 1998, 46, 25–31.

188. Mazza, G.; Kay, C.D.; Cottrell, T.; Holub, B.J. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J. Agric. Food Chem. 2002, 50, 7731–7737.

189. Liu, M.; Li, X.Q.; Weber, C.; Lee, C.Y.; Brown, J.; Liu, R.H. Antioxidant and antiproliferative activities of raspberries. J. Agric. Food Chem. 2002, 50, 2926–2930.

190. Yoshimoto, M.; Okuno, S.; Yoshinaga, M.; Yamakawa, O.; Yamaguchi, M.; Yamada, J. Antimutagenicity of sweetpotato (Ipomoea batatas) roots. Biosci. Biotechnol. Biochem. 1999, 63, 537–541.

191. Suda, I.; Furuta, S.; Nishiba, Y.; Yamakawa, O.; Matsugano, K.; Sugita, K. Reduction of liver injury induced by carbon tetrachloride in rats administered PSP juice. J. Jpn. Soc. Food Sci. Technol. 1997, 44, 315–318.

192. Tsukui, A.; Suzuki, A.; Nagayama, S.; Terahara, N. Stability of anthocyanin pigments from purple leaves of Perilla ocimoides L. var. crispa. Nippon Shokuhin Kagaku Kogaku Kaishi. 1996, 43, 451–457.

193. Tsukui, A.; Suzuki, A.; Komaki, K.; Terahara, N.; Yamakawa, O.; Hayashi, K. Stability and composition ratio of anthocyanin pigments from Ipomoea batatas. Poir. Nippon Shokuhin Kagaku Kogaku Kaishi. 1999, 46, 148–154.

194. Kano, M.; Takayanagi, T.; Harada, K.; Makino, K.; Ishikawa, F. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem. 2005, 69, 979-88.

195. Han, K.H.; Matsumoto, A.; Shimada, K.; Sekikawa, M.; Fukushima, M. Effects of anthocyanin-rich purple potato flakes on antioxidant status in F344 rats fed a cholesterol- rich diet. Br J Nutr. 2007, 98, 14-21.

196. Han, K.H.; Sekikawa, M.; Shimada, K.; Hashimoto, M.; Hashimoto, N.; Noda, T.; Tanaka, H.; Fukushima, M. Anthocyanin-rich purple potato flake extract has antioxidant capacity and improves antioxidant potential in rats. Br J Nutr. 2006, 96, 1125–1133.

197. Keppler, K.; Humpf, H.U. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem. 2005, 13, 5195–5205.

198. Jawi, M.; Wita, W.; Suprapta, D.N. Extract of purple sweet potato tuber increases Sod and decreases VCAM-1 Expression by increasing Nrf2 expression in the aortic endothelia of hypercholesterolemic rabbits. J. Biol. Agric. Healthcare. 2014, 4, 76–84.

199. Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total polyphenol and other oxidation Fsubstrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178.

200. Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812.

201. Warren, F.J.; Fukuma, N.M.; Mikkelsen, D.; Flanagan, B.M.; Williams, B.A.; Lisle, A.T.; Cuív, P.Ó.; Morrison, M.; Gidley, M.J. Food starch structure impacts gut microbiome composition. Msphere 2018, 3, 86–118.

202. Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235.

203. Zakrzewski, M.; Proietti, C.; Ellis, J.J.; Hasan, S.; Brion, M.J.; Berger, B.; Krause, L. Calypso: A user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics 2017, 33, 782–783.

204. Ikeda, T.; Tanaka, Y.; Yamamoto, K.; Morii, H.; Kamisako, T.; Ogawa, H. Geranium Dielsianum extract powder (Miskamiska) improves the intestinal environment through alteration of microbiota and microbial metabolites in rats. J. Funct. Foods. 2014, 11, 12– 19.

205. Dolara, P.; Luceri, C.; De Filippo, C.; Femia, A.P.; Giovannelli, L.; Caderni, G.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res. 2005, 591, 237-246.

206. Tuohy, K.M.; Conterno, L.; Gasperotti, M.; Viola, R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenolas and/or fiber. J Agric Food Chem. 2012, 60, 8776–8782.

207. Tabasco, R.; Sánchez-Patán, F.; Monagas, M.; Bartolomé, B.; Moreno-Arribas, M.V.; Peláez, C.; Requena, T. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: Resistance and metabolism. Food Microbiol. 2011, 28, 1345-1352.

208. Canard, B.; Cole, S.T. Genome organization of the anaerobic pathogen Clostridium perfringens. Proc Natl Acad Sci. 1989, 86, 6676-6680.

209. Lopez-Legarrea, P.; Fuller, N.; Zulet, M.; Martinez, J.A.; Caterson, I.D. The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pac J Clin Nutr. 2014, 23, 360-368.

210. FRO linger, T.; Sims, S.; Smith, C.; Wang, J.; Cheng, H.; Faith, J.; Ho, L.; Hao, K.; Pasinetti, G.M. The gut microbiota composition affects dietary polyphenols-mediated cognitive resilience in mice by modulating the bioavailability of phenolic acids. Sci. Rep. 2019, 9, 3546.

211. Espley, R.V.; Butts, C.A.; Laing, W.A.; Martell, S.; Smith, H.; McGhie, T.K.; Zhang, J.; Paturi, G.; Hedderley, D.; Bovy, A.; Schouten, H.J.; Putterill, J.; Allan, A.C.; Hellens, R.P. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J. Nutr. 2014, 144, 146–154.

212. De, F.C.; Cavalieri, D.; Di, P.M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 14691–14696.

213. Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Dan, K.; Walters, W.A.; Knight, R. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108.

214. Kovatcheva-Datchary, P.; Nilsson, A.; Akrami, R.; Lee, Y.S.; De Vadder, F.; Arora, T.; Hallen, A.; Martens, E.; Björck, I.; Bäckhed, F. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015, 22, 971–982.

215. Zhang, X.; Yang, Y.; Wu, Z.; Weng, P. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. J. Agric. Food Chem. 2016, 64, 2582– 2590.

216. Koropatkin, N.M.; Cameron, E.A.; Martens, E.C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 2012, 10, 323–335.

217. Yang, Q.; Lin, S.L.; Kwok, M.K.; Leung, G.M.; Schooling, C.M. The roles of 27 genera of human gut microbiota in ischemic heart disease, Type 2 diabetes mellitus, and their risk factors: A Mendelian randomization study. Am J Epidemiol. 2018, 187, 1916–1922.

218. Öco, U.; Frank, J.A.; Fangel, J.U.; Oostindjer, M.; da Silva, C.S.; Bolhuis, E.J.; Bosch, G.; Willats, W.G.; Pope, P.B.; Diep, D.B. Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome 2015, 3, 1–15.

219. Molan, A.L.; Liu, Z.; Kruger, M. The ability of blackcurrant extracts to positively modulate key markers of gastrointestinal function in rats. World, J. Microbiol. Biotechnol. 2010, 26, 1735–1743.

220. Kim, H.J.; White, P.J. In vitro fermentation of oat flours from typical and high β-glucan oat lines. J. Agric. Food Chem. 2009, 57, 7529–7536.

221. Yoshinaga, M. New cultivar “Ayamurasaki” for colorant production. Sweet potato Research. Frontiers (Boulder) 1995, 1–2.

222. Lim, S.; Xu, J.; Kim, J.; Chen, T.Y.; Su, X.; Standard, J.; Carey, E.; Griffin, J.; Herndon, B.; Katz, B.; Tomich, J.; Wang, W. Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Mol. Nutr. Food Res. 2013, 57, 1908–1917.

223. Furuta, S.; Suda, I.; Nishiba, Y.; Yamakawa, O. High tert-butylperoxyl radical scavenging activities of sweet potato cultivars with purple flesh. Food Sci. Technol. Int. 1998, 4, 33– 35.

224. Miyazaki, M.; Makino, K.; Iwadate, E.; Deguchi, Y.; Ishikawa, F. Anthocyanins from purple sweet potato Ipomoea batatas cultivar Ayamurasaki suppress the development of atherosclerotic lesions and both enhancements of oxidative stress and soluble vascular cell adhesion molecule-1 in apolipoprotein E-deficient mice. J. Agric. Food Chem. 2008, 56, 11485–11492.

225. Suda, I.; Oki, T.; Masuda, M.; Kobayashi, M.; Nishiba, Y.; Furuta, S. Physiological functionality of purple-fleshed sweet potatoes containing anthocyanins and their utilization in foods. JARQ-Jpn. Agr. Res. Q. 2003, 37, 167–173.

226. Stahl, W.; van den Berg, H.; Arthur, J.; Bast, A.; Dainty, J.; Faulks, R.M.; Gärtner, C.; Haenen, G.; Hollman, P.; Holst, B.; Kelly, F.J.; Polidori, M.C.; Rice-Evans, C.; Southon, S.; van Vliet, T.; Viña-Ribes, J.; Williamson, G.; Astleyet, S.B. Bioavailability and metabolism. Mol. Aspects. Med. 2002, 23, 39–100.

227. Han, K.H.; Ohashi, S.; Sasaki. K.; Nagata, R.; Pelpolage, S.; Fukuma, N.; Reed, J.D.; Shimada, K.; Kadoya, N.; Fukushima, M. Dietary adzuki bean paste dose-dependently reduces visceral fat accumulation in rats fed a normal. Food Res. Int. 2020, 130, 1088902.

228. National Research Council. Guide for the care and use of laboratory animals. Available from: http://newton.nap.edu/html/labrats/. 1996.

229. Bovee-Oudenhoven, I.M.; Termont, D.S.; Heidt, P.J.; Van der Meer, R. Increasing the intestinal resistance of rats to the invasive pathogen Salmonella enteritidis: additive effects of dietary lactulose and calcium. Gut 1997, 40, 497–504.

230. Kilua, A.; Chihiro, H.; Han, K.H.; Homma, K.; Fukuma, N.; Kamitani, T.; Suzuki, T.; Fukushima, M. Whole kidney bean (Phaseolus vulgaris) and bean hull reduce the total serum cholesterol, modulate the gut microbiota and affect the caecal fermentation in rats. Bioact. Carbohydr. Diet. Fibre. 2020, 24, 100232.

231. Cox, R.A.; García-Palmieri, M.R. Cholesterol, triglycerides, and associated lipoproteins. (3rd ed.). Boston: Butterworths, (Chapter 31). 1990.

232. Kosmala, M.; Jurgoński, A.; Juśkiewicz, J.; Karlińska, E.; Macierzyński, J.; Rój, E.; Zduńczyk, Z. Chemical composition of blackberry press cake, polyphenolic extract, and defatted seeds, and their effects on cecal fermentation, bacterial metabolites, and blood lipid profile in rats. J Agric Food Chem. 2017, 65, 5470-5479.

233. Zern, T.L.; West, K.L.; Fernandez, M.L. Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. J Nutr. 2003, 133, 2268-2272.

234. Pokimica, B.; García-Conesa, M.T.; Zec, M.; Debeljak-Martačić, J.; Ranković, S.; Vidović, N.; Petrović-Oggiano, G.; Konić-Ristić, A.; Glibetić, M. Chokeberry juice containing polyphenols does not affect cholesterol or blood pressure but modifies the composition of plasma phospholipids fatty acids in individuals at cardiovascular risk. Nutrients 2019, 11, 850.

235. Nakagawa, K.; Maruyama, Y.; Miyazawa, T. Anthocyanin administration elevates plasma homocysteine in rats. J Nutr Sci Vitaminol (Tokyo). 2002, 48, 530-535.

236. Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645.

237. Miranda, A.M.; Steluti, J.; Fisberg, R.M.; Marchioni, D.M. Association between polyphenol intake and hypertension in adults and older adults: A population-based study in Brazil. PLoS ONE 2016, 11, e0165791.

238. Castro-Barquero, S.; Tresserra-Rimbau, A.; Vitelli-Storelli, F.; Doménech, M.; Salas- Salvadó, J.; Martín-Sánchez, V.; Rubín-García, M.; Buil-Cosiales, P.; Corella, D.; Fitó, M.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; Wärnberg, J.; Martínez, J.A.; Serra- Majem, L.; Tinahones, F.J.; Lapetra, J.; Pintó, X.; Tur, J.A.; Garcia-Rios, A.; García- Molina, L.; Delgado-Rodriguez, M.; Matía-Martín, P.; Daimiel, L.; Vidal, J.; Vázquez, C.; Cofán, M.; Romanos-Nanclares, A.; Becerra-Tomas, N.; Barragan, R.; Castañer, O.; Konieczna, J.; González-Palacios, S.; Sorto-Sánchez, C.; Pérez-López, J.; Zulet, M.A.; Bautista-Castaño, I.; Casas, R.; Gómez-Perez, A.M.; Santos-Lozano, J.M.; Rodríguez-Sanchez, M.Á.; Julibert, A.; Martín-Calvo, N.; Hernández-Alonso, P.; Sorlí, J.V.; Sanllorente, A.; Galmés-Panadés, A.M.; Cases-Pérez, E.; Goicolea-Güemez, L.; Ruiz- Canela, M.; Babio, N.; Hernáez, Á.; Lamuela-Raventós, R.M.; Estruch, R. Dietary polyphenol intake is associated with HDL-Cholesterol and a better profile of other components of the metabolic syndrome: A PREDIMED-Plus Sub-Study. Nutrients 2020, 12, 689.

239. Clemmesen, J.O.; Larsen, F.S.; Kondrup, J.; Hansen, B.A.; Ott, P. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology, 1999, 29, 648-53.

240. Jaroslawska, J.; Juskiewicz, J.; Wroblewska, M.; Jurgonski, A.; Krol, B.; Zdunczyk, Z. Polyphenol-rich strawberry pomace reduces serum and liver lipids and alters gastrointestinal metabolite formation in fructose-fed rats. J Nutr. 2011, 141, 1777-1783.

241. Collins, B.; Hoffman, J.; Martinez, K.; Grace, M.; Lila, M.A.; Cockrell, C.; Nadimpalli, A.; Chang, E.; Chuang, C.C.; Zhong, W.; Mackert, J.; Shen, W.; Cooney, P.; Hopkins, R.; McIntosh, M. A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice, J. Nutr. Biochem. 2015, 31, 150–165.

242. Zhang, NN.; Guo, W.H.; Hu, H.; Zhou, A.R.; Liu, Q.P.; Zheng, B.D.; Zeng, S.X. Effect of a polyphenol-rich canarium album extract on the composition of the gut microbiota of mice fed a high-fat diet. Molecules, 2018, 23, 2188.

243. Konikoff, T.; Gophna, U. Oscillospira, A central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016, 24, 523–524.

244. Keren, N.; Konikoff, F.M.; Paitan, Y.; Gabay, G.; Reshef, L.; Naftali, T.; Gophna, U. Interactions between the intestinal microbiota and bile acids in gallstones patients. Environ. Microbiol. Rep. 2015, 7, 874–880.

245. Marques, C.; Fernandes, I.; Meireles, M.; Faria, A.; Spencer, J.P.E.; Mateus, N.; Calhau, C. Gut microbiota modulation accounts for the neuroprotective properties of anthocyanins. Sci. Rep. 2018, 8, 11342.

246. Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm activity of plant polyphenols. Molecules 2016, 21, 1717.

247. Forester, S.C.; Waterhouse, A.L. Gut metabolites of anthocyanins, gallic acid, 3-O- methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of Caco-2 cells. J. Agric. Food Chem. 2010, 58, 5320–5327.

248. Sun, H.; Zhang, P.; Zhu, Y.; Lou, Q.; He, S. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea Batatas (L.) Lam.). Sci. Rep. 2018, 8, 5018.

249. Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; Leonard, P.; Li, J.; Burgdorf, K.; Grarup, N.; Jørgensen, T.; Brandslund, I.; Nielsen, H.B.; Juncker, A.S.; Bertalan, M.; Levenez, F.; Pons, N.; Rasmussen, S.; Sunagawa, S.; Tap, J.; Tims, S.; Zoetendal, E.G.; Brunak, S.; Clément, K.; Doré, J.; Kleerebezem, M.; Kristiansen, K.; Renault, P.; Sicheritz-Ponten, T.; de Vos, W.M.; Zucker, J.D.; Raes, J.; Hansen, T.; MetaHIT consortium.; Bork, P.; Wang, J.; Ehrlich, S.D.; Pedersen, O. Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541–546.

250. Yang, C.; Deng, Q.; Xu, J.; Wang, X.; Hu, C.; Tang, H.; Huang, F. Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. Food Res. Int. 2019, 116, 1202–1211.

251. Cheng, J.R.; Liu, X.M.; Chen, Z.Y.; Zhang, Y.S.; Zhang, Y.H. Mulberry anthocyanin biotransformation by intestinal probiotics. Food Chem. 2016, 213, 721–727.

252. Nohynek, L.J.; Alakomi, H.L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman- Caldentey, K.M.; Puupponen-Pimiä, R.H. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer. 2006, 54, 18–32.

253. Hidalgo, M.; Oruna-Concha, M.J.; Kolida, S.; Walton, G.E.; Kallithraka, S.; Spencer, J.P.; de Pascual-Teresa, S. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agric. Food Chem. 2012, 60, 3882–3890.

254. Scharlau, D.; Borowicki, A.; Habermann, N.; Hofmann, T.; Klenow, S.; Miene, C.; Munjal, U.; Stein, K.; Glei, M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat. Res. 2009, 682, 39–53.

255. Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009, 294, 1–8.

256. Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; Le Chatelier, E.; Levenez, F.; Doré, J.; Mattila, I.; Plichta, D.R.; Pöhö, P.; Hellgren, L.I.; Arumugam, M.; Sunagawa, S.; Vieira-Silva, S.; Jørgensen, T.; Holm, J.B.; Trošt, K.; MetaHIT Consortium.; Kristiansen, K.; Brix, S.; Raes, J.; Wang, J.; Hansen, T.; Bork, P.; Brunak, S.; Oresic, M.; Ehrlich, S.D.; Pedersen, O. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381.

257. Kanakis, C.D.; Hasni, I.; Bourassa, P.; Tarantilis, P.A.; Polissiou, M.G.; Tajmir-Riahi, H.A. Milk beta-lactoglobulin complexes with tea polyphenols. Food Chem. 2011, 127, 1046– 1055.

258. Siebert, K.J.; Troukhanova, N.V.; Lynn, P.Y. Nature of polyphenol-protein interactions. J. Agric. Food. Chem. 1996, 44, 80–85.

259. Smith, E.A.; Macfarlane, G.T. Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 1997, 3, 327–337.

260. Azuma, T.; Shigeshiro, M.; Kodama, M.; Tanabe, S.; Suzuki, T. Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice. J. Nutr. 2013, 143, 827–834.

261. Childers, N.K.; Bruce, M.G.; McGhee, J.R. Molecular mechanisms of immunoglobulin A defense. Annu. Rev. Microbiol. 1989, 43, 503–536.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る