リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enhancement of Vivid-based photo-activatable Gal4 transcription factor in mammalian cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enhancement of Vivid-based photo-activatable Gal4 transcription factor in mammalian cells

Nagasaki, Shinji C. Fukuda, Tomonori D. Yamada, Mayumi Suzuki, Yusuke III Kakutani, Ryo Guy, Adam T. Imayoshi, Itaru 京都大学 DOI:10.1247/csf.22074

2023

概要

The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms.

この論文で使われている画像

参考文献

in which stable cells expressing this factor at not too-high levels

Aoki, K., Kondo, Y., Naoki, H., Hiratsuka, T., Itoh, R.E., and Matsuda, M.

can be prospectively screened and identified. In contrast, due to

2017. Propagating Wave of ERK Activation Orients Collective Cell

the lower dark background activity of eGAV, this is more

Migration. Dev. Cell, 43: 305–317.e305.

advantageous for transient transfection experiments where the

Baeriswyl, T., Mauti, O., and Stoeckli, E.T. 2008. Temporal control of

rigorous control of PA-transcription factor expression levels is

gene silencing by in ovo electroporation. Methods Mol. Biol., 442:

more difficult, and transfection efficiencies are more variable

231–244.

between cells.

Bajar, B.T., Wang, E.S., Lam, A.J., Kim, B.B., Jacobs, C.L., Howe, E.S.,

In summary, eGAV can be introduced into cells by various

Davidson, M.W., Lin, M.Z., and Chu, J. 2016. Improving brightness

methods including lipofection, electroporation, hydrodynamic-

and photostability of green and red fluorescent proteins for live

based transfection and lentivirus vectors. We demonstrated

cell imaging and FRET reporting. Sci. Rep., 6: 20889.

reliable blue light-controllable gene expression in in vitro and in

Barna, J., Csermely, P., and Vellai, T. 2018. Roles of heat shock factor

vivo models. Compared to the widely used PA-Gal4 transcription

1 beyond the heat shock response. Cell Mol. Life Sci., 75: 2897–

factor hGAVPO, the dark background activity of eGAV was

significantly lower and the maximum light-induced gene

2916.

Beerli, R.R., Segal, D.J., Dreier, B., and Barbas, C.F., 3rd. 1998. Toward

expression level was higher, thus improving the reliability of light-

controlling gene expression at will: specific regulation of the

induced gene expression controls. Therefore, we believe that

erbB-2/HER-2 promoter by using polydactyl zinc finger proteins

eGAV will be a valuable tool for the systematic analysis of

constructed from modular building blocks. Proc. Natl. Acad. Sci.

dynamic

USA, 95: 14628–14633.

changes

morphological,

in

cellular

functional,

and

gene

expression

pathological

during

changes

in

multicellular systems.

Benedetti, L., Marvin, J.S., Falahati, H., Guillén-Samander, A., Looger,

L.L., and De Camilli, P. 2020. Optimized Vivid-derived Magnets

photodimerizers for subcellular optogenetics in mammalian cells.

Elife, 9.

Author Contributions

Brand, A.H. and Perrimon, N. 1993. Targeted gene expression as a

S.C.N. and I.I. conceived the project and designed the

experiments. S.C.N. performed most of the experiments. T.D.F.

and S.C.N. performed the eGAV-eMag variant evaluation

experiments.

A.T.G.

and

S.C.N.

performed

the

in

means of altering cell fates and generating dominant phenotypes.

Development, 118: 401–415.

Chan, Y.B., Alekseyenko, O.V., and Kravitz, E.A. 2015. Optogenetic

ovo

Control of Gene Expression in Drosophila. PLoS One, 10: e0138181.

electroporation experiments. Y.S.III and S.C.N. conducted data

Chavez, A., Scheiman, J., Vora, S., Pruitt, B.W., Tuttle, M., E, P.R.I., Lin,

analysis. M.Y., R.K. and I.I. supervised the experiments to evaluate

S., Kiani, S., Guzman, C.D., Wiegand, D.J., Ter-Ovanesyan, D., Braff,

the optogenetic tools. S.C.N., A.T.G. and I.I. wrote the manuscript

J.L., Davidsohn, N., Housden, B.E., Perrimon, N., Weiss, R., Aach, J.,

with input from all of the other authors.

Collins, J.J., and Church, G.M. 2015. Highly efficient Cas9-mediated

transcriptional programming. Nat. Methods, 12: 326–328.

44

Cell Structure and Function 48: 31–47 (2023)

https://doi.org/10.1247/csf.22074

Enhancement of Gal4-Vivid transcription factor

Cell Structure and Function

photoacoustic imaging using a near-infrared transgenic mouse

Crefcoeur, R.P., Yin, R., Ulm, R., and Halazonetis, T.D. 2013. Ultraviolet-

model. Nat. Commun., 13: 2813.

B-mediated induction of protein-protein interactions in mammalian

cells. Nat. Commun., 4: 1779.

Kawano, F., Suzuki, H., Furuya, A., and Sato, M. 2015. Engineered

di Pietro, F., Herszterg, S., Huang, A., Bosveld, F., Alexandre, C.,

pairs of distinct photoswitches for optogenetic control of cellular

proteins. Nat. Commun., 6: 6256.

Sancéré, L., Pelletier, S., Joudat, A., Kapoor, V., Vincent, J.P., and

Bellaïche, Y. 2021. Rapid and robust optogenetic control of gene

Kawano, F., Okazaki, R., Yazawa, M., and Sato, M. 2016. A

expression in Drosophila. Dev. Cell, 56: 3393–3404.e3397.

photoactivatable Cre-loxP recombination system for optogenetic

genome engineering. Nat. Chem. Biol., 12: 1059–1064.

Dunsing, V., Luckner, M., Zühlke, B., Petazzi, R.A., Herrmann, A., and

Chiantia, S. 2018. Optimal fluorescent protein tags for quantifying

Kawashima, T., Kitamura, K., Suzuki, K., Nonaka, M., Kamijo, S.,

protein oligomerization in living cells. Sci. Rep., 8: 10634.

Takemoto-Kimura, S., Kano, M., Okuno, H., Ohki, K., and Bito, H.

Fischer, J.A., Giniger, E., Maniatis, T., and Ptashne, M. 1988. GAL4

2013. Functional labeling of neurons and their projections using the

activates transcription in Drosophila. Nature, 332: 853–856.

synthetic activity-dependent promoter E-SARE. Nat. Methods, 10:

Guglielmi, G., Barry, J.D., Huber, W., and De Renzis, S. 2015. An

Optogenetic Method to Modulate Cell Contractility during Tissue

889–895.

Kennedy, M.J., Hughes, R.M., Peteya, L.A., Schwartz, J.W., Ehlers,

Morphogenesis. Dev. Cell, 35: 646–660.

M.D., and Tucker, C.L. 2010. Rapid blue-light-mediated induction of

protein interactions in living cells. Nat. Methods, 7: 973–975.

Guntas, G., Hallett, R.A., Zimmerman, S.P., Williams, T., Yumerefendi,

H., Bear, J.E., and Kuhlman, B. 2015. Engineering an improved light-

Kinjo, T., Terai, K., Horita, S., Nomura, N., Sumiyama, K., Togashi, K.,

induced dimer (iLID) for controlling the localization and activity of

Iwata, S., and Matsuda, M. 2019. FRET-assisted photoactivation of

signaling proteins. Proc. Natl. Acad. Sci. USA, 112: 112–117.

flavoproteins for in vivo two-photon optogenetics. Nat. Methods,

16: 1029–1036.

Hallett, R.A., Zimmerman, S.P., Yumerefendi, H., Bear, J.E., and

Kuhlman, B. 2016. Correlating in Vitro and in Vivo Activities of

Konermann, S., Brigham, M.D., Trevino, A., Hsu, P.D., Heidenreich, M.,

Light-Inducible Dimers: A Cellular Optogenetics Guide. ACS Synth.

Cong, L., Platt, R.J., Scott, D.A., Church, G.M., and Zhang, F. 2013.

Biol., 5: 53–64.

Optical control of mammalian endogenous transcription and

epigenetic states. Nature, 500: 472–476.

Hamburger, V. and Hamilton, H.L. 1951. A series of normal stages in

the development of the chick embryo. J. Morphol., 88: 49–92.

Kunii, A., Hara, Y., Takenaga, M., Hattori, N., Fukazawa, T., Ushijima, T.,

Hörner, M., Müller, K., and Weber, W. 2017. Light-Responsive

Yamamoto,

Promoters. Methods Mol. Biol., 1651: 173–186.

Repurposed

Imayoshi, I., Isomura, A., Harima, Y., Kawaguchi, K., Kori, H., Miyachi,

and

Sakuma,

Technology

for

T.

2018.

Enhanced

Three-Component

Expression:

Highly

Accumulable Transcriptional Activators via Branched Tag Arrays.

Crispr J., 1: 337–347.

H., Fujiwara, T., Ishidate, F., and Kageyama, R. 2013. Oscillatory

control of factors determining multipotency and fate in mouse

T.,

Kuwasaki, Y., Suzuki, K., Yu, G., Yamamoto, S., Otabe, T., Kakihara, Y.,

neural progenitors. Science, 342: 1203–1208.

Nishiwaki, M., Miyake, K., Fushimi, K., Bekdash, R., Shimizu, Y.,

Imayoshi, I. and Kageyama, R. 2014a. bHLH factors in self-renewal,

Narikawa, R., Nakajima, T., Yazawa, M., and Sato, M. 2022. A red

multipotency, and fate choice of neural progenitor cells. Neuron,

light-responsive photoswitch for deep tissue optogenetics. Nat.

82: 9–23.

Biotechnol., 40: 1672–1679.

Imayoshi, I. and Kageyama, R. 2014b. Oscillatory control of bHLH

Li, H., Zhang, Q., Gu, Y., Wu, Y., Wang, Y., Wang, L., Feng, S., Hu, Y.,

factors in neural progenitors. Trends Neurosci., 37: 531–538.

Zheng, Y., Li, Y., Ye, H., Zhou, B., Lin, L., Liu, M., Yang, H., and Li, D.

Isomura, A., Ogushi, F., Kori, H., and Kageyama, R. 2017. Optogenetic

2020. Efficient photoactivatable Dre recombinase for cell type-

perturbation and bioluminescence imaging to analyze cell-to-cell

specific spatiotemporal control of genome engineering in the

transfer of oscillatory information. Genes Dev., 31: 524–535.

mouse. Proc. Natl. Acad. Sci. USA, 117: 33426–33435.

Jung, H., Kim, S.W., Kim, M., Hong, J., Yu, D., Kim, J.H., Lee, Y., Kim, S.,

Liu, F., Song, Y., and Liu, D. 1999. Hydrodynamics-based transfection

Woo, D., Shin, H.S., Park, B.O., and Heo, W.D. 2019. Noninvasive

in animals by systemic administration of plasmid DNA. Gene Ther.,

6: 1258–1266.

optical activation of Flp recombinase for genetic manipulation in

deep mouse brain regions. Nat. Commun., 10: 314.

Liu, H., Gomez, G., Lin, S., Lin, S., and Lin, C. 2012. Optogenetic

control of transcription in zebrafish. PLoS One, 7: e50738.

Kaberniuk, A.A., Shemetov, A.A., and Verkhusha, V.V. 2016. A bacterial

phytochrome-based optogenetic system controllable with near-

Lu, C.C., Jeng, Y.Y., Tsai, C.H., Liu, M.Y., Yeh, S.W., Hsu, T.Y., and Chen,

infrared light. Nat. Methods, 13: 591–597.

M.R. 2006. Genome-wide transcription program and expression of

the Rta responsive gene of Epstein-Barr virus. Virology, 345: 358–

Kaise, T., Fukui, M., Sueda, R., Piao, W., Yamada, M., Kobayashi, T.,

Imayoshi, I., and Kageyama, R. 2022. Functional rejuvenation of

aged neural stem cells by Plagl2 and anti-Dyrk1a activity. Genes

372.

Luker, G.D., Pica, C.M., Song, J., Luker, K.E., and Piwnica-Worms, D.

Dev., 36: 23–37.

2003. Imaging 26S proteasome activity and inhibition in living

mice. Nat. Med., 9: 969–973.

Kasatkina, L.A., Ma, C., Matlashov, M.E., Vu, T., Li, M., Kaberniuk, A.A.,

Yao, J., and Verkhusha, V.V. 2022. Optogenetic manipulation and

Cell Structure and Function 48: 31–47 (2023)

Masamizu, Y., Ohtsuka, T., Takashima, Y., Nagahara, H., Takenaka, Y.,

https://doi.org/10.1247/csf.22074

45

S.C. Nagasaki et al.

Cell Structure and Function

Yoshikawa, K., Okamura, H., and Kageyama, R. 2006. Real-time

Regier, J.L., Shen, F., and Triezenberg, S.J. 1993. Pattern of aromatic

imaging of the somite segmentation clock: revelation of unstable

and hydrophobic amino acids critical for one of two subdomains of

oscillators in the individual presomitic mesoderm cells. Proc. Natl.

the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA, 90:

Acad. Sci. USA, 103: 1313–1318.

883–887.

Miyoshi, H. 2004. Gene delivery to hematopoietic stem cells using

lentiviral vectors. Methods Mol. Biol., 246: 429–438.

VP16 is an unusually potent transcriptional activator. Nature, 335:

Mizushima, S. and Nagata, S. 1990. pEF-BOS, a powerful mammalian

expression vector. Nucleic Acids Res., 18: 5322.

563–564.

Salghetti, S.E., Muratani, M., Wijnen, H., Futcher, B., and Tansey, W.P.

Morikawa, K., Furuhashi, K., de Sena-Tomas, C., Garcia-Garcia, A.L.,

2000. Functional overlap of sequences that activate transcription

Bekdash, R., Klein, A.D., Gallerani, N., Yamamoto, H.E., Park, S.E.,

and signal ubiquitin-mediated proteolysis. Proc. Natl. Acad. Sci.

Collins, G.S., Kawano, F., Sato, M., Lin, C.S., Targoff, K.L., Au, E.,

USA, 97: 3118–3123.

Salling, M.C., and Yazawa, M. 2020. Photoactivatable Cre

Sano, H. and Yokoi, M. 2007. Striatal medium spiny neurons terminate

recombinase 3.0 for in vivo mouse applications. Nat. Commun., 11:

in a distinct region in the lateral hypothalamic area and do not

2141.

directly innervate orexin/hypocretin- or melanin-concentrating

Motta-Mena, L.B., Reade, A., Mallory, M.J., Glantz, S., Weiner, O.D.,

hormone-containing neurons. J. Neurosci., 27: 6948–6955.

Lynch, K.W., and Gardner, K.H. 2014. An optogenetic gene

Schindler, S.E., McCall, J.G., Yan, P., Hyrc, K.L., Li, M., Tucker, C.L., Lee,

expression system with rapid activation and deactivation kinetics.

J.M., Bruchas, M.R., and Diamond, M.I. 2015. Photo-activatable Cre

Nat. Chem. Biol., 10: 196–202.

recombinase regulates gene expression in vivo. Sci. Rep., 5: 13627.

Müller, K., Engesser, R., Metzger, S., Schulz, S., Kämpf, M.M.,

Seipel, K., Georgiev, O., and Schaffner, W. 1992. Different activation

Busacker, M., Steinberg, T., Tomakidi, P., Ehrbar, M., Nagy, F.,

domains stimulate transcription from remote (‘enhancer’) and

Timmer, J., Zubriggen, M.D., and Weber, W. 2013a. A red/far-red

proximal (‘promoter’) positions. EMBO J., 11: 4961–4968.

light-responsive bi-stable toggle switch to control gene expression

in mammalian cells. Nucleic Acids Res., 41: e77.

C.C., Ulm, R., Timmer, J., Zurbriggen, M.D., and Weber, W. 2013b.

Multi-chromatic control of mammalian gene expression and

signaling. Nucleic Acids Res., 41: e124.

photoinducible

homodimerization

system

with

improved dimer-forming efficiency. ACS Chem. Biol., 9: 617–621.

Sato,

M.

2017.

Shimizu-Sato, S., Huq, E., Tepperman, J.M., and Quail, P.H. 2002. A

CRISPR-Cas9-based

1044.

Strickland, D., Lin, Y., Wagner, E., Hope, C.M., Zayner, J., Antoniou, C.,

Sosnick, T.R., Weiss, E.L., and Glotzer, M. 2012. TULIPs: tunable,

Nihongaki, Y., Furuhata, Y., Otabe, T., Hasegawa, S., Yoshimoto, K.,

and

inducing functional neuronal differentiation. Proc. Natl. Acad. Sci.

USA, 115: E6722–E6730.

light-switchable gene promoter system. Nat. Biotechnol., 20: 1041–

Nihongaki, Y., Suzuki, H., Kawano, F., and Sato, M. 2014. Genetically

engineered

Shao, J., Wang, M., Yu, G., Zhu, S., Yu, Y., Heng, B.C., Wu, J., and Ye, H.

2018. Synthetic far-red light-mediated CRISPR-dCas9 device for

Müller, K., Engesser, R., Schulz, S., Steinberg, T., Tomakidi, P., Weber,

photoactivatable

transcription systems to induce neuronal differentiation. Nat.

Methods, 14: 963–966.

light-controlled interacting protein tags for cell biology. Nat.

Methods, 9: 379–384.

Sueda, R., Imayoshi, I., Harima, Y., and Kageyama, R. 2019. High Hes1

expression and resultant Ascl1 suppression regulate quiescent vs.

Noda, N. and Ozawa, T. 2018. Light-controllable Transcription System

by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B.

Photochem. Photobiol., 94: 1071–1076.

active neural stem cells in the adult mouse brain. Genes Dev., 33:

511–523.

Taslimi, A., Zoltowski, B., Miranda, J.G., Pathak, G.P., Hughes, R.M.,

Pathak, G.P., Spiltoir, J.I., Höglund, C., Polstein, L.R., Heine-Koskinen,

and Tucker, C.L. 2016. Optimized second-generation CRY2-CIB

S., Gersbach, C.A., Rossi, J., and Tucker, C.L. 2017. Bidirectional

dimerizers and photoactivatable Cre recombinase. Nat. Chem.

approaches for optogenetic regulation of gene expression in

mammalian cells using Arabidopsis cryptochrome 2. Nucleic Acids

Res., 45: e167.

Polstein,

L.R.

Biol., 12: 425–430.

van Essen, D., Engist, B., Natoli, G., and Saccani, S. 2009. Two modes

of transcriptional activation at native promoters by NF-kappaB

and

Gersbach,

C.A.

2012.

Light-inducible

spatiotemporal control of gene activation by customizable zinc

p65. PLoS Biol., 7: e73.

van Hooijdonk, L.W., Ichwan, M., Dijkmans, T.F., Schouten, T.G., de

finger transcription factors. J. Am. Chem. Soc., 134: 16480–16483.

Backer, M.W., Adan, R.A., Verbeek, F.J., Vreugdenhil, E., and

Quejada, J.R., Park, S.E., Awari, D.W., Shi, F., Yamamoto, H.E., Kawano,

Fitzsimons, C.P. 2009. Lentivirus-mediated transgene delivery to

F., Jung, J.C., and Yazawa, M. 2017. Optimized light-inducible

transcription in mammalian cells using Flavin Kelch-repeat F-box1/

GIGANTEA and CRY2/CIB1. Nucleic Acids Res., 45: e172.

46

Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M. 1988. GAL4-

the

hippocampus

reveals

sub-field

specific

differences

in

expression. BMC Neurosci., 10: 2.

Voon, D.C., Subrata, L.S., Baltic, S., Leu, M.P., Whiteway, J.M., Wong, A.,

Redchuk, T.A., Omelina, E.S., Chernov, K.G., and Verkhusha, V.V. 2017.

Knight, S.A., Christiansen, F.T., and Daly, J.M. 2005. Use of mRNA-

Near-infrared optogenetic pair for protein regulation and spectral

and protein-destabilizing elements to develop a highly responsive

multiplexing. Nat. Chem. Biol., 13: 633–639.

reporter system. Nucleic Acids Res., 33: e27.

Cell Structure and Function 48: 31–47 (2023)

https://doi.org/10.1247/csf.22074

Enhancement of Gal4-Vivid transcription factor

Cell Structure and Function

modifications of single cells or cell populations. Nat. Methods, 17:

Vora, S., Cheng, J., Xiao, R., VanDusen, N.J., Quintino, L., Pu, W.T.,

Vandenberghe, L.H., Chavez, A., and Church, G. 2018. Rational

design of a compact CRISPR-Cas9 activator for AAV-mediated

422–429.

Yazawa, M., Sadaghiani, A.M., Hsueh, B., and Dolmetsch, R.E. 2009.

delivery. bioRxiv: 298620.

Induction of protein-protein interactions in live cells using light. Nat.

Biotechnol., 27: 941–945.

Wang, X., Chen, X., and Yang, Y. 2012. Spatiotemporal control of gene

expression by a light-switchable transgene system. Nat. Methods,

Yoshioka-Kobayashi, K., Matsumiya, M., Niino, Y., Isomura, A., Kori, H.,

9: 266–269.

Miyawaki, A., and Kageyama, R. 2020. Coupling delay controls

synchronized oscillation in the segmentation clock. Nature, 580:

Yamada, M., Suzuki, Y., Nagasaki, S.C., Okuno, H., and Imayoshi, I.

2018. Light Control of the Tet Gene Expression System in

Mammalian Cells. Cell Rep., 25: 487-500.e486.

119–123.

Zhou, Y., Kong, D., Wang, X., Yu, G., Wu, X., Guan, N., Weber, W., and

Yamada, M., Nagasaki, S.C., Suzuki, Y., Hirano, Y., and Imayoshi, I.

Ye, H. 2022. A small and highly sensitive red/far-red optogenetic

switch for applications in mammals. Nat. Biotechnol., 40: 262–272.

2020. Optimization of Light-Inducible Gal4/UAS Gene Expression

System in Mammalian Cells. iScience, 23: 101506.

Zoltowski, B.D., Schwerdtfeger, C., Widom, J., Loros, J.J., Bilwes, A.M.,

Yao, S., Yuan, P., Ouellette, B., Zhou, T., Mortrud, M., Balaram, P.,

Dunlap, J.C., and Crane, B.R. 2007. Conformational switching in the

fungal light sensor Vivid. Science, 316: 1054–1057.

Chatterjee, S., Wang, Y., Daigle, T.L., Tasic, B., Kuang, X., Gong, H.,

Luo, Q., Zeng, S., Curtright, A., Dhaka, A., Kahan, A., Gradinaru, V.,

Zoltowski, B.D., Vaccaro, B., and Crane, B.R. 2009. Mechanism-based

Chrapkiewicz, R., Schnitzer, M., Zeng, H., and Cetin, A. 2020. RecV

tuning of a LOV domain photoreceptor. Nat. Chem. Biol., 5: 827–

recombinase

834.

system

for

in

vivo

Cell Structure and Function 48: 31–47 (2023)

targeted

optogenomic

https://doi.org/10.1247/csf.22074

47

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る