リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A novel role of PRL in regulating epithelial cell density by inducing apoptosis at confluence」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A novel role of PRL in regulating epithelial cell density by inducing apoptosis at confluence

Lohani, Sweksha 大阪大学

2021.03.24

概要

Maintaining proper epithelial cell density is essential for the survival of multicellular organisms. While regulation of cell density through apoptosis is well known, its mechanistic details remain elusive. Here, I report the involvement of membrane-anchored phosphatase of regenerating liver (PRL), originally known for its role in cancer malignancy, in this process. In epithelial MDCK cells, upon confluence, doxycycline- induced expression of PRL upregulated apoptosis, reducing the cell density. This could be circumvented by artificially reducing the cell density via stretching the cell-seeded silicon chamber. Moreover, siRNA-mediated knockdown of endogenous PRL blocked apoptosis, leading to greater cell density. Mechanistically, PRL promoted apoptosis by upregulating the translation of E-cadherin and activating TGF-β pathway. Morpholino- mediated inhibition of PRL expression in zebrafish embryos caused developmental defect with reduced apoptosis and increased epithelial cell density during convergent extension. This study revealed a novel role of PRL in regulating density-dependent apoptosis in vertebrate epithelium.

参考文献

Abercrombie, M., and Heaysman, J.E. (1954). Observations on the social behaviour of cells in tissue culture: II. “Monolayering” of fibroblasts. Exp. Cell Res. 6, 293–306.

Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., Solari, A., Bobisse, S., Rondina, M.B., Guzzardo, V., et al. (2009). A Mutant-p53/Smad Complex Opposes p63 to Empower TGFβ-Induced Metastasis. Cell 137, 87–98.

Akieda, Y., Ogamino, S., Furuie, H., Ishitani, S., Akiyoshi, R., Nogami, J., Masuda, T., Shimizu, N., Ohkawa, Y., and Ishitani, T. (2019). Cell competition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo. Nat. Commun. 10, 4710.

Akimenko, M.A., Ekker, M., Wegner, J., Lin, W., and Westerfield, M. (1994). Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J. Neurosci. 14, 3475–3486.

Andl, C.D., Fargnoli, B.B., Okawa, T., Bowser, M., Takaoka, M., Nakagawa, H., Klein- Szanto, A., Hua, X., Herlyn, M., and Rustgi, A.K. (2006). Coordinated functions of E- cadherin and transforming growth factor beta receptor II in vitro and in vivo. Cancer Res. 66, 9878–9885.

Bai, Y., Zhou, H.M., Zhang, L., Dong, Y., Zeng, Q., Shou, W., and Zhang, Z.Y. (2016). Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis. Sci. Rep. 6, 34211.

Basak, S., Jacobs, S.B., Krieg, A.J., Pathak, N., Zeng, Q., Kaldis, P., Giaccia, A.J., and Attardi, L.D. (2008). The Metastasis-Associated Gene Prl-3 Is a p53 Target Involved in Cell-Cycle Regulation. Mol. Cell 30, 303–314.

Bessette, D.C., Qiu, D., and Pallen, C.J. (2008). PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev. 27, 231–252.

Burgess, H.M., and Gray, N.K. (2010). mRNA-specific regulation of translation by poly(A)-binding proteins. Biochem. Soc. Trans. 38, 1517–1522.

Cereijido, M., Ehrenfeld, J., Meza, I., and Martínez-Palomo, A. (1980). Structural and functional membrane polarity in cultured monolayers of MDCK cells. J. Membr. Biol. 52, 147–159.

Cereijido, M., Ehrenfeld, J., Fernàndez-Castelo, S., and Meza, I. (1981). FLUXES, JUNCTIONS, AND BLISTERS IN CULTURED MONOLAYERS OF EPITHELIOID CELLS (MDCK). Ann. N. Y. Acad. Sci. 372, 422–441.

Cheung, K.J., Gabrielson, E., Werb, Z., and Ewald, A.J. (2013). Collective Invasion in Breast Cancer Requires a Conserved Basal Epithelial Program. Cell 155, 1639–1651.

Dai, N., Lu, A.P., Shou, C.C., and Li, J.Y. (2009). Expression of phosphatase regenerating liver 3 is an independent prognostic indicator for gastric cancer. World J. Gastroenterol. 15, 1499–1505.

de Baaij, J.H., Stuiver, M., Meij, I.C., Lainez, S., Kopplin, K., Venselaar, H., Müller, D., Bindels, R.J., and Hoenderop, J.G. (2012). Membrane topology and intracellular processing of cyclin M2 (CNNM2). J. Biol. Chem. 287, 13644–13655.

Diamond, R.H., Cressman, D.E., Laz, T.M., Abrams, C.S., and Taub, R. (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol. Cell Biol. 14, 3752-3762.

Dong, Y., Zhang, L., Zhang, S., Bai, Y., Chen, H., Sun, X., Yong, W., Li, W., Colvin, S. C., Rhodes, S. J., et al. (2012). Phosphatase of regenerating liver 2 (PRL2) is essential for placental development by down-regulating PTEN (Phosphatase and Tensin Homologue Deleted on Chromosome 10) and activating Akt protein. J. Biol. Chem. 287, 32172– 32179.

Dong, Y., Zhang, L., Bai, Y., Zhou, H.M., Campbell, A.M., Chen, H., Yong, W., Zhang, W., Zeng, Q., Shou, W., et al. (2014). Phosphatase of Regenerating Liver 2 (PRL2) Deficiency Impairs Kit Signaling and Spermatogenesis. J. Biol. Chem. 289, 3799–3810.

Dumaual, C.M., Sandusky, G.E., Crowell, P.L., and Randall, S.K. (2006). Cellular Localization of PRL-1 and PRL-2 Gene Expression in Normal Adult Human Tissues. J.Histochem. Cytochem. 54, 1401-1412.

Eagle, H., and Levine, E.M. (1967). Growth Regulatory Effects of Cellular Interaction. Nature 213, 1102–1106.

Eisenhoffer, G.T., Loftus, P.D., Yoshigi, M., Otsuna, H., Chien, C.B., Morcos, P.A., and Rosenblatt, J. (2012). Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549.

Forte, E., Orsatti, L., Talamo, F., Barbato, G., De Francesco, R., and Tomei, L. (2008). Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3. Biochim. Biophys. Acta. 1783, 334–344.

Funato, Y., Yamazaki, D., Mizukami, S., Du, L., Kikuchi, K., and Miki, H. (2014). Membrane protein CNNM4-dependent Mg2+ efflux suppresses tumor progression. J. Clin. Invest. 124, 5398–5410.

Funato, Y., Yoshida, A., Hirata, Y., Hashizume, O., Yamazaki, D., and Miki, H. (2020). The Oncogenic PRL Protein Causes Acid Addiction of Cells by Stimulating Lysosomal Exocytosis. Dev. Cell 55, 387–397.e8.

Furuse, M., Itoh, M., Hirase, T., Nagafuchi, A., Yonemura, S., Tsukita, S., and Tsukita, S. (1994). Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J. Cell Biol. 127, 1617–1626.

Gottardi, C.J., Wong, E., and Gumbiner, B.M. (2001). E-Cadherin Suppresses Cellular Transformation by Inhibiting β-Catenin Signaling in an Adhesion-Independent Manner.J. Cell Biol. 153, 1049–1060.

Gu, Y., Forostyan, T., Sabbadini, R., and Rosenblatt, J. (2011). Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway. J. Cell Biol. 193, 667–676.

Gulerez, I., Funato, Y., Wu, H., Yang, M., Kozlov, G., Miki, H., and Gehring, K. (2016). Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis. EMBO Rep. 17, 1890–1900.

Guo, K., Li, J., Tang, J.P., Koh, V., Gan, B.Q., and Zeng, Q. (2004). Catalytic domain of PRL-3 plays an essential role in tumor metastasis: formation of PRL-3 tumors inside the blood vessels. Cancer Biol. Ther. 3, 945–951.

Guo, P., Xu, X., Wang, F., Yuan, X., Tu, Y., Zhang, B., Zheng, H., Yu, D., Ge, W., Gong, Z., et al. (2019). A Novel Neuroprotective Role of Phosphatase of Regenerating Liver-1 against CO2 Stimulation in Drosophila. iScience 19, 291-302.

Hardy, S., Uetani, N., Wong, N., Kostantin, E., Labbé, D.P., Bégin, L.R., Mes-Masson, A., Miranda-Saavedra, D., and Tremblay, M.L. (2015). The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene 34, 986–995.

Hardy, S., Kostantin, E., Hatzihristidis, T., Zolotarov, Y., Uetani, N., and Tremblay, M.L. (2018). Physiological and oncogenic roles of the PRL phosphatases. FEBS J. 285, 3886- 3908.

Hirata, Y., Funato, Y., and Miki, H. (2014). Basolateral sorting of the Mg²⁺ transporter CNNM4 requires interaction with AP-1A and AP-1B. Biochem. Biophys. Res. Commun. 455, 184–189.

Hsieh, A.C., Liu, Y., Edlind, M.P., Ingolia, N.T., Janes, M.R., Sher, A., Shi, E.Y., Stumpf, C.R., Christensen, C., Bonham, M.J., Wang, S., et al. (2012). The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55–61.

Ichida, J.K., Blanchard, J., Lam, K., Son, E.Y., Chung, J.E., Egli, D., Loh, K.M., Carter, A.C., Di Giorgio, F.P., Koszka, K., et al. (2009). A Small-Molecule Inhibitor of Tgf-β Signaling Replaces Sox2 in Reprogramming by Inducing Nanog. Cell Stem Cell 5, 491– 503.

Itoh, M., Nagafuchi, A., Moroi, S., and Tsukita, S. (1997). Involvement of ZO-1 in Cadherin-based Cell Adhesion through Its Direct Binding to α Catenin and Actin Filaments. J. Cell Biol. 138, 181–192.

Johansson, J.A., Marie, K.L., Lu, Y., Brombin, A., Santoriello, C., Zeng, Z., Zich, J., Gautier, P., von Kriegsheim, A., Brunsdon, H., et al. (2020). PRL3-DDX21 Transcriptional Control of Endolysosomal Genes Restricts Melanocyte Stem Cell Differentiation. Dev Cell. 54, 317-332.e9.

Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of Embryonic Development of the Zebrafish. Dev. Dyn. 203, 253–310.

Kojima, T., Funato, Y., and Miki, H. (2019). Phosphatase of regenerating liver sensitizes MET to functional activation by hepatocyte growth factor. Biochem. J. 476, 1419–1431.

Kozlov, G., Cheng, J., Ziomek, E., Banville, D., Gehring, K., and Ekiel, I. (2004). Structural Insights into Molecular Function of the Metastasis-associated Phosphatase PRL-3. J. Biol. Chem. 279, 11882–11889.

Kozlov, G., Funato, Y., Chen, Y.S., Zhang, Z., Illes, K., Miki, H., and Gehring, K. (2020). PRL3 pseudophosphatase activity is necessary and sufficient to promote metastatic growth. J. Biol. Chem. 295, 11682–11692.

Laping, N.J., Everitt, J.I., Frazier, K.S., Burgert, M., Portis, M.J., Cadacio, C., Gold, L.I., and Walker, C.L. (2007). Tumor-Specific Efficacy of Transforming Growth Factor-βRI Inhibition in Eker Rats. Clin. Cancer Res. 13, 3087–3099.

Larsson, O., Morita, M., Topisirovic, I., Alain, T., Blouin, M.J., Pollak, M., and Sonenberg,N. (2012). Distinct perturbation of the translatome by the antidiabetic drug metformin.Proc. Natl. Acad. Sci. 109, 8977–8982.

Leighton, J., Brada, Z., Estes, L. W., and Justh, G. (1969). Secretory Activity and Oncogenicity of a Cell Line (MDCK) Derived from Canine Kidney. Science 163, 472– 473.

Li, Q., Bai, Y., Lyle, L.T., Yu, G., Amarasinghe, O., Nguele Meke, F., Carlock, C., and Zhang, Z.Y. (2020). Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. Proc. Natl. Acad. Sci. 117, 20538–20548.

Liu, F., Pouponnot, C., and Massagué, J. (1997). Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes. Genes Dev. 11, 3157–3167.

Lu, M., Marsters, S., Ye, X., Luis, E., Gonzalez, L., and Ashkenazi, A. (2014). E-Cadherin Couples Death Receptors to the Cytoskeleton to Regulate Apoptosis. Mol. Cell 54, 987– 998.

Ma, S., Meng, Z., Chen, R., and Guan, K.L. (2019). The Hippo Pathway: Biology and Pathophysiology. Annu. Rev. Biochem. 88, 577–604.

Ma, X.M., and Blenis, J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318.

Marinari, E., Mehonic, A., Curran, S., Gale, J., Duke, T., and Baum, B. (2012). Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature 484, 542–545.

Matoulkova, E., Michalova, E., Vojtesek, B., and Hrstka, R. (2012). The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 9, 563–576.

Matter, W.F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., Johnson, B., Bloem, L., Pickard, T., Donaghue, M., et al. (2001). Role of PRL-3, a Human Muscle- Specific Tyrosine Phosphatase, in Angiotensin-II Signaling. Biochem. Biophys. Res. Commun. 283, 1061-1068.

Mayinuer, A., Yasen, M., Mogushi, K., Obulhasim, G., Xieraili, M., Aihara, A., Tanaka, S., Mizushima, H., Tanaka, H., and Arii, S. (2013). Upregulation of Protein Tyrosine Phosphatase Type IVA Member 3 (PTP4A3/PRL-3) is Associated with Tumor Differentiation and a Poor Prognosis in Human Hepatocellular Carcinoma. Ann. Surg. Oncol. 20, 305–317.

McClatchey, A.I., and Yap, A.S. (2012). Contact inhibition (of proliferation) redux. Curr. Opin. Cell Biol. 24, 685–694.

McCrea, P.D., Turck, C.W., and Gumbiner, B. (1991). A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 254,1359–1361.

McParland, V., Varsano, G., Li, X., Thornton, J., Baby, J., Aravind, A., Meyer, C., Pavic, K., Rios, P., and Köhn, M. (2011). The Metastasis-Promoting Phosphatase PRL-3 Shows Activity toward Phosphoinositides. Biochemistry 50, 7579–7590.

Mignone, F., Gissi, C., Liuni, S., and Pesole, G. (2002). Untranslated regions of mRNAs. Genome Biol. 3, reviews0004.1– reviews0004.10.

Misfeldt, D.S., Hamamoto, S.T., and Pitelka, D.R. (1976). Transepithelial transport in cell culture. Proc. Natl. Acad. Sci. 73, 1212–1216.

Nallet-Staub, F., Yin, X., Gilbert, C., Marsaud, V., Ben Mimoun, S., Javelaud, D., Leof,E. B., and Mauviel, A. (2015). Cell Density Sensing Alters TGF-β Signaling in a Cell- Type-Specific Manner, Independent from Hippo Pathway Activation. Dev. Cell 32, 640– 651.

Neel, J.C., Humbert, L., and Lebrun, J.J. (2012). The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN Mol. Biol. 2012, 381428.Padmanaban, V., Krol, I., Suhail, Y., Szczerba, B.M., Aceto, N., Bader, J.S., and Ewald,A.J. (2019). E-cadherin is required for metastasis in multiple models of breast cancer.Nature 573, 439–444.

Pagarigan, K.T., Bunn, B.W., Goodchild, J., Rahe, T.K., Weis, J.F., and Saucedo, L.J. (2013). Drosophila PRL-1 Is a Growth Inhibitor That Counteracts the Function of the Src Oncogene. PLoS One 8, e61084.

Polato, F., Codegoni, A., Fruscio, R., Perego, P., Mangioni, C., Saha, S., Bardelli, A., and Broggini, M. (2005). PRL-3 Phosphatase Is Implicated in Ovarian Cancer Growth. Clin.Cancer Res. 11, 6835–6839.

Radke, I., Götte, M., Kersting, C., Mattsson, B., Kiesel, L., and Wülfing, P. (2006). Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. Br. J. Cancer 95, 347–354.

Romani, A.M. (2011). CELLULAR MAGNESIUM HOMEOSTASIS. Arch. Biochem.Biophys. 512, 1–23.

Rosenblatt, J., Raff, M.C., and Cramer, L.P. (2001). An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr. Biol. 11, 1847–1857.

Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V.E., Rago, C., St Croix, B., Romans, K.E., Choti, M.A., Lengauer, C., Kinzler, K.W., et al. (2001). A Phosphatase Associated with Metastasis of Colorectal Cancer. Science 294, 1343–1346.

Schulte-Merker, S., Ho, R.K., Herrmann, B.G., and Nüsslein-Volhard, C. (1992). The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116, 1021–1032.

Shi, Y., and Massagué, J. (2003). Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell 113, 685–700.

Shimizu, N., Ishitani, S., Sato, A., Shibuya, H., and Ishitani, T. (2014). Hipk2 and PP1c cooperate to maintain Dvl protein levels required for Wnt signal transduction. Cell Rep. 8, 1391–1404.

Skou, J.C. (1957). The Influence of Some Cations on an Adenosine Triphosphatase from Peripheral Nerves. Biochim. Biophys. Acta. 23, 394–401.

Sonenberg, N., and Hinnebusch, A.G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell 136, 731–745.

Srinivasan, B., Kolli, A.R., Esch, M.B., Abaci, H.E., Shuler, M.L., and Hickman, J.J. (2015). TEER Measurement Techniques for In Vitro Barrier Model Systems. J. Lab. Autom. 20, 107–126.

Stevenson, B.R., Siliciano, J.D., Mooseker, M.S., and Goodenough, D.A. (1986). Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103, 755–766.

Sun, J.P., Wang, W.Q., Yang, H., Liu, S., Liang, F., Fedorov, A.A., Almo, S.C., and Zhang,Z.Y. (2015). Structure and Biochemical Properties of PRL-1, a Phosphatase Implicated in Cell Growth, Differentiation, and Tumor Invasion. Biochemistry 44, 12009-12021.

Tada, M., and Heisenberg, C.P. (2012). Convergent extension: using collective cell migration and cell intercalation to shape embryos. Development 139, 3897–3904.

Takeichi, M. (1977). Functional correlation between cell adhesive properties and some cell surface proteins. J. Cell Biol. 75, 464–474.

Thoreen, C.C., Chantranupong, L., Keys, H.R., Wang, T., Gray, N.S., and Sabatini, D.M. (2012). A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113.

Tian, W., Qu, L., Meng, L., Liu, C., Wu, J., and Shou, C. (2012). Phosphatase of regenerating liver-3 directly interacts with integrin β1 and regulates its phosphorylation at tyrosine 783. BMC Biochem. 13, 22.

Tonks, N.K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833-846.

Wada, H., Ghysen, A., Asakawa, K., Abe, G., Ishitani, T., and Kawakami, K. (2013). Wnt/Dkk negative feedback regulates sensory organ size in zebrafish. Curr. Biol. 23, 1559-1565.

Wallingford, J.B., Fraser, S.E., and Harland, R.M. (2002). Convergent Extension: The Molecular Control of Polarized Cell Movement during Embryonic Development. Dev. Cell 2, 695–706.

Wei, M., Korotkov, K.V., and Blackburn, J.S. (2018). Targeting phosphatases of regenerating liver (PRLs) in cancer. Pharmacol. Ther. 190, 128-138.

Westerfield, M. (2000). The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed., Univ. of Oregon Press, Eugene.

Yao, D., Dai, C., and Peng, S. (2011). Mechanism of the Mesenchymal–Epithelial Transition and Its Relationship with Metastatic Tumor Formation. Mol. Cancer Res. 9, 1608–1620.

Yu, L., Kelly, U., Ebright, J.N., Malek, G., Saloupis, P., Rickman, D.W., McKay, B.S., Arshavsky, V.Y., and Bowes Rickman, C. (2007). Oxidative Stress-Induced Expression and Modulation of Phosphatase of Regenerating Liver-1 (PRL-1) in Mammalian Retina. Biochim. Biophys. Acta. 1773, 1473-1482.

Yu, T.X., Gu, B.L., Yan, J.K., Zhu, J., Yan, W.H., Chen, J., Qian, L.X., and Cai, W. (2016).CUGBP1 and HuR regulate E-cadherin translation by altering recruitment of E-cadherin mRNA to processing bodies and modulate epithelial barrier function. Am. J. Physiol. Cell Physiol. 310, C54–C65.

Zeng, Q., Hong, W., and Tan, Y.H. (1998). Mouse PRL-2 and PRL-3, Two Potentially Prenylated Protein Tyrosine Phosphatases Homologous to PRL-1. Biochem. Biophys. Res. Commun. 244, 421–427.

Zeng, Q., Si, X., Horstmann, H., Xu, Y., Hong, W., and Pallen, C.J. (2000). Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome. J. Biol. Chem. 275, 21444-21452.

Zhang, B., Halder, S.K., Kashikar, N.D., Cho, Y.J., Datta, A., Gorden, D.L., and Datta,P.K. (2010). Antimetastatic Role of Smad4 Signaling in Colorectal Cancer.Gastroenterology 138, 969–980.e3.

Zhang, C., Qu, L., Lian, S., Meng, L., Min, L., Liu, J., Song, Q., Shen, L., and Shou, C. (2019). PRL-3 Promotes Ubiquitination and Degradation of AURKA and Colorectal Cancer Progression via Dephosphorylation of FZR1. Cancer Res. 79, 928–940.

Zhang, Y., Alexander, P.B., and Wang, X.F. (2017). TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb. Perspect. Biol. 9, a022145.

Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761.

Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–1971.

Zimmerman, M.W., Homanics, G.E., and Lazo, J.S. (2013). Targeted Deletion of the Metastasis-Associated Phosphatase Ptp4a3 (PRL-3) Suppresses Murine Colon Cancer.PLoS One. 8, e58300.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る