リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ラパログ依存的な新規細胞間接着制御系による中胚葉遊走の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ラパログ依存的な新規細胞間接着制御系による中胚葉遊走の解析

宇佐美, 知沙 大阪大学

2022.06.15

概要

細胞間接着は多細胞生物の構造を確立し維持する上で非常に重要である。その中でも主要な役割を担っているカドヘリンはカルシウムイオン依存性の細胞間接着分子であり、細胞外ドメインを介して近隣細胞のカドヘリンと結合し、細胞同士を接着させる。カドヘリンの発現量や活性は動的に制御されており、そのダイナミクスはエピボリー運動や神経堤細胞の遊走、収斂伸長運動といった様々な発生プロセスに関与することが知られている。

動的な細胞間接着制御が重要な発生プロセスの一つとして、原腸形成運動が挙げられる。原腸形成は初期胚における主要な発生イベントの1つであり、組織の大きな変形を伴い、前後軸・神経パターン・原腸といった基本的なボディプランが構築される。

アフリカツメガエルの原腸形成過程において、中胚葉はblastocoel roof (BCR)上を動物極方向へと遊走する。この時、中胚葉−BCR間の接着頻度が遊走を制御していると考えられているが、接着頻度と遊走の関係を直接的に解析する実験手法は確立されていない。そこで本研究では、小分子化合物ラパマイシンのアナログであるラパログを用いて、異なる組織間の接着を特異的に誘起する実験系を新たに開発した。

まず、ラパログ特異的に細胞間接着を誘起させるための細胞膜タンパク質であるriCAM1とriCAM2を作製した。細胞にこれらのタンパク質を発現させ、カルシウムイオンを含まないメディウム中で解離させた状態でラパログを添加すると、細胞間接着が誘起された。また、接着パターンを解析した結果、ラパログはriCAM1発現細胞とriCAM2発現細胞間の接着のみを誘起し、同種のriCAMを発現している細胞間の接着には影響を与えなかった。

続いて、BCRにriCAM1、中胚葉にriCAM2を独立に発現させ、ラパログを添加することでこれらの組織間の接着を特異的に増強させると、中胚葉の遊走が強く阻害された。また、riCAMの発現とラパログの添加は、中胚葉とBCR間の組織境界であるBrachet’s cleftの形成には影響を及ぼさなかった。さらに、riCAM1を発現しているBCR断片上に riCAM2を発現している中胚葉組織をマウントし、組織境界における細胞の挙動を観察した結果、ラパログが両組織間の接着頻度を増強させることを定量的に明らかにした。

これらの結果は、中胚葉−BCR間の接着頻度が中胚葉遊走を制御するというモデルを強く支持している。さらに、本実験系がin vivoにおいて組織間接着を特異的に制御できる有用な手法であることを示している。

Cell-cell adhesion is very important in establishing and maintaining the structure of multicellular organisms. Cadherins, which play a major role in this process, are Ca2+-dependent intercellular adhesion molecules that bind to cadherins of neighboring cells via their extracellular domains, resulting in cell-cell adhesion. Cadherin expression and activity are dynamically regulated, and its dynamics are known to be involved in various developmental processes such as epiboly, neural crest cell migration, and convergent extension.

One developmental process in which dynamic regulation of intercellular adhesion is important is the gastrulation movement. Gastrulation is one of the major developmental events in the early embryo and involves major tissue deformation and the establishment of basic body plans such as the anterior- posterior axis, neural patterns, and archenteron.

During the gastrulation of the Xenopus laevis, the mesoderm migrates toward the animal pole on the blastocoel roof (BCR). Although the frequency of adhesion between mesoderm and BCR is thought to regulate migration, no direct experimental method has been established to analyze the relationship between the frequency of adhesion and migration. In this study, I developed a new experimental system that specifically induces adhesion between different tissues using rapalog, an analog of rapamycin.

First, I produced two membrane proteins, riCAM1 and riCAM2, to induce cell-cell adhesion specifically with rapalog. When cells expressed these proteins and dissociated them in Ca2+-free medium and added rapalog, intercellular adhesion was induced. Analysis of adhesion patterns showed that rapalog induced adhesion only between riCAM1- and riCAM2-expressing cells and did not affect adhesion between cells expressing the same riCAM.

When riCAM1 and riCAM2 were independently expressed in the BCR and mesoderm, respectively, and adhesion between these tissues was specifically enhanced by the addition of rapalog, migration of the mesoderm was strongly inhibited. Expression of riCAM and addition of rapalog had no effect on the formation of Brachet's cleft, the tissue boundary between the mesoderm and BCR. Furthermore, I mounted mesodermal tissue expressing riCAM2 on BCR fragments expressing riCAM1 and observed cell behavior at the tissue boundary, quantitatively demonstrating that rapalog enhanced the frequency of adhesion between the two tissues.

These results strongly support the model that mesoderm-BCR adhesion frequency regulates mesoderm migration. Furthermore, they demonstrate that this experimental system is a useful method for specifically regulating intertissue adhesion in vivo.

参考文献

1. Abraham, R.T. & Wiederrecht, G.J. (1996) Immunopharmacology of rapamycin. Annu Rev Immunol 14, 483-510.

2. Amack, J.D. & Manning, M.L. (2012) Knowing the boundaries: extending the differential adhesion hypothesis in embryonic cell sorting. Science 338, 212-215.

3. Banaszynski, L.A., Liu, C.W. & Wandless, T.J. (2005) Characterization of the FKBP.rapamycin.FRB ternary complex. J Am Chem Soc 127, 4715-4721.

4. Bayle, J.H., Grimley, J.S., Stankunas, K., Gestwicki, J.E., Wandless, T.J. & Crabtree, G.R. (2006) Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem Biol 13, 99-107.

5. Brodland, G.W. (2002) The Differential Interfacial Tension Hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J Biomech Eng 124, 188-197.

6. Cachat, E., Liu, W., Martin, K.C., Yuan, X., Yin, H., Hohenstein, P. & Davies, J.A. (2016) 2- and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation. Sci Rep 6, 20664.

7. Cayuso, J., Xu, Q. & Wilkinson, D.G. (2015) Mechanisms of boundary formation by Eph receptor and ephrin signaling. Dev Biol 401, 122-131.

8. Chen, F. & Wegner, S.V. (2020) Blue-Light-Switchable Bacterial Cell-Cell Adhesions Enable the Control of Multicellular Bacterial Communities. ACS Synth Biol 9, 1169-1180.

9. Chung, H.A., Yamamoto, T.S. & Ueno, N. (2007) ANR5, an FGF target gene product, regulates gastrulation in Xenopus. Curr Biol 17, 932-939.

10. Cooke, J.E., Kemp, H.A. & Moens, C.B. (2005) EphA4 is required for cell adhesion and rhombomere-boundary formation in the zebrafish. Curr Biol 15, 536-542.

11. Cousin, H. (2017) Cadherins function during the collective cell migration of Xenopus Cranial Neural Crest cells: revisiting the role of E-cadherin. Mech Dev 148, 79-88.

12. Damm, E.W. & Winklbauer, R. (2011) PDGF-A controls mesoderm cell orientation and radial intercalation during Xenopus gastrulation. Development 138, 565-575.

13. Davidson, L.A., Hoffstrom, B.G., Keller, R. & DeSimone, D.W. (2002) Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin alpha(5)beta(1), fibronectin, and tissue geometry. Dev Biol 242, 109-129.

14. Dent, J.A., Polson, A.G. & Klymkowsky, M.W. (1989) A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development 105, 61-74.

15. Durbin, L., Brennan, C., Shiomi, K., Cooke, J., Barrios, A., Shanmugalingam, S., Guthrie, B., Lindberg, R. & Holder, N. (1998) Eph signaling is required for segmentation and differentiation of the somites. Genes Dev 12, 3096-3109.

16. Evren, S., Wen, J.W., Luu, O., Damm, E.W., Nagel, M. & Winklbauer, R. (2014) EphA4- dependent Brachyury expression is required for dorsal mesoderm involution in the Xenopus gastrula. Development 141, 3649-3661.

17. Fagotto, F. (2014) The cellular basis of tissue separation. Development 141, 3303-3318.

18. Fagotto, F., Rohani, N., Touret, A.S. & Li, R. (2013) A molecular base for cell sorting at embryonic boundaries: contact inhibition of cadherin adhesion by ephrin/ Eph-dependent contractility. Dev Cell 27, 72-87.

19. Fukui, A., Goto, T., Kitamoto, J., Homma, M. & Asashima, M. (2007) SDF-1 alpha regulates mesendodermal cell migration during frog gastrulation. Biochem Biophys Res Commun 354, 472-477.

20. Garcia-Bellido, A., Ripoll, P. & Morata, G. (1973) Developmental compartmentalisation of the wing disk of Drosophila. Nat New Biol 245, 251-253.

21. Glass, D.S. & Riedel-Kruse, I.H. (2018) A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. Cell 174, 649-658.e616.

22. Gorny, A.K. & Steinbeisser, H. (2012) Brachet's cleft: a model for the analysis of tissue separation in Xenopus. Wiley Interdiscip Rev Dev Biol 1, 294-300.

23. Hara, Y., Nagayama, K., Yamamoto, T.S., Matsumoto, T., Suzuki, M. & Ueno, N. (2013) Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation. Dev Biol 382, 482-495.

24. Huang, Y. & Winklbauer, R. (2018) Cell migration in the Xenopus gastrula. Wiley Interdiscip Rev Dev Biol 7, e325.

25. Isaacs, H.V., Deconinck, A.E. & Pownall, M.E. (2007) FGF4 regulates blood and muscle specification in Xenopus laevis. Biol Cell 99, 165-173.

26. Janiszewska, M., Primi, M.C. & Izard, T. (2020) Cell adhesion in cancer: Beyond the migration of single cells. J Biol Chem 295, 2495-2505.

27. Kolos, J.M., Voll, A.M., Bauder, M. & Hausch, F. (2018) FKBP Ligands-Where We Are and Where to Go? Front Pharmacol 9, 1425.

28. Koo, H., Choi, M., Kim, E., Hahn, S.K., Weissleder, R. & Yun, S.H. (2015) Bioorthogonal Click Chemistry-Based Synthetic Cell Glue. Small 11, 6458-6466.

29. Krueger, D., Izquierdo, E., Viswanathan, R., Hartmann, J., Pallares Cartes, C. & De Renzis, S. (2019) Principles and applications of optogenetics in developmental biology. Development 146.

30. Lecuit, T. & Yap, A.S. (2015) E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol 17, 533-539.

31. Lee, C.H. & Gumbiner, B.M. (1995) Disruption of gastrulation movements in Xenopus by a dominant-negative mutant for C-cadherin. Dev Biol 171, 363-373.

32. Lee, H.S., Nishanian, T.G., Mood, K., Bong, Y.S. & Daar, I.O. (2008) EphrinB1 controls cell- cell junctions through the Par polarity complex. Nat Cell Biol 10, 979-986.

33. Lee, K.B., Hwang, J.M., Choi, I.S., Rho, J., Choi, J.S., Kim, G.H., Kim, S.I., Kim, S. & Lee, Z.W. (2011) Direct monitoring of the inhibition of protein-protein interactions in cells by translocation of PKCδ fusion proteins. Angew Chem Int Ed Engl 50, 1314-1317.

34. Leptin, M. (2005) Gastrulation movements: the logic and the nuts and bolts. Dev Cell 8, 305-320.

35. Luu, O., Damm, E.W., Parent, S.E., Barua, D., Smith, T.H., Wen, J.W., Lepage, S.E., Nagel, M., Ibrahim-Gawel, H., Huang, Y., Bruce, A.E. & Winklbauer, R. (2015) PAPC mediates self/non-self-distinction during Snail1-dependent tissue separation. J Cell Biol 208, 839-856.

36. Montero, J.A. & Heisenberg, C.P. (2004) Gastrulation dynamics: cells move into focus. Trends Cell Biol 14, 620-627.

37. Nagel, M., Tahinci, E., Symes, K. & Winklbauer, R. (2004) Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development 131, 2727-2736.

38. Nava, P., Kamekura, R. & Nusrat, A. (2013) Cleavage of transmembrane junction proteins and their role in regulating epithelial homeostasis. Tissue Barriers 1, e24783.

39. Niessen, C.M., Leckband, D. & Yap, A.S. (2011) Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91, 691-731.

40. Nieto, M.A., Huang, R.Y., Jackson, R.A. & Thiery, J.P. (2016) EMT: 2016. Cell 166, 21-45.

41. Ninomiya, H., David, R., Damm, E.W., Fagotto, F., Niessen, C.M. & Winklbauer, R. (2012) Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo. J Cell Sci 125, 1877-1883.

42. Park, E.C., Cho, G.S., Kim, G.H., Choi, S.C. & Han, J.K. (2011) The involvement of Eph- Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements. Dev Biol 350, 441-450.

43. Pollock, R., Giel, M., Linher, K. & Clackson, T. (2002) Regulation of endogenous gene expression with a small-molecule dimerizer. Nat Biotechnol 20, 729-733.

44. Putyrski, M. & Schultz, C. (2012) Protein translocation as a tool: The current rapamycin story. FEBS Lett 586, 2097-2105.

45. Reintsch, W.E., Habring-Mueller, A., Wang, R.W., Schohl, A. & Fagotto, F. (2005) beta- Catenin controls cell sorting at the notochord-somite boundary independently of cadherin- mediated adhesion. J Cell Biol 170, 675-686.

46. Rohani, N., Canty, L., Luu, O., Fagotto, F. & Winklbauer, R. (2011) EphrinB/EphB signaling controls embryonic germ layer separation by contact-induced cell detachment. PLoS Biol 9, e1000597.

47. Rohani, N., Parmeggiani, A., Winklbauer, R. & Fagotto, F. (2014) Variable combinations of specific ephrin ligand/Eph receptor pairs control embryonic tissue separation. PLoS Biol 12, e1001955.

48. Shindo, A. (2018) Models of convergent extension during morphogenesis. Wiley Interdiscip Rev Dev Biol 7.

49. Sive, H.L., Grainger, R.M. & Harland, R.M. (2000) Fate Mapping and Lineage Labeling. In: Early Development of Xenopus laevis A Laboratory Manual (pp. 143-162. Cold Spring Harbor Laboratory Press.

50. Stankunas, K., Bayle, J.H., Gestwicki, J.E., Lin, Y.M., Wandless, T.J. & Crabtree, G.R. (2003) Conditional protein alleles using knockin mice and a chemical inducer of dimerization. Mol Cell 12, 1615-1624.

51. Steinberg, M.S. (2007) Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev 17, 281-286.

52. Tada, M. & Heisenberg, C.P. (2012) Convergent extension: using collective cell migration and cell intercalation to shape embryos. Development 139, 3897-3904.

53. Takeichi, M. (1988) The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102, 639-655.

54. Taniguchi, N. & Murakami, H. (2017) Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method. Methods Mol Biol 1498, 339-347.

55. Teramura, Y., Chen, H., Kawamoto, T. & Iwata, H. (2010) Control of cell attachment through polyDNA hybridization. Biomaterials 31, 2229-2235.

56. Theveneau, E. & Mayor, R. (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366, 34-54.

57. Veiga, E., de Lorenzo, V. & Fernández, L.A. (2003) Autotransporters as scaffolds for novel bacterial adhesins: surface properties of Escherichia coli cells displaying Jun/Fos dimerization domains. J Bacteriol 185, 5585-5590.

58. Wallingford, J.B., Sater, A.K., Uzman, J.A. & Danilchik, M.V. (1997) Inhibition of morphogenetic movement during Xenopus gastrulation by injected sulfatase: implications for anteroposterior and dorsoventral axis formation. Dev Biol 187, 224-235.

59. Washbourne, P., Dityatev, A., Scheiffele, P., Biederer, T., Weiner, J.A., Christopherson, K.S. & El-Husseini, A. (2004) Cell adhesion molecules in synapse formation. J Neurosci 24, 9244- 9249.

60. Winklbauer, R. (2015) Cell adhesion strength from cortical tension - an integration of concepts. J Cell Sci 128, 3687-3693.

61. Winklbauer, R. & Keller, R.E. (1996) Fibronectin, mesoderm migration, and gastrulation in Xenopus. Dev Biol 177, 413-426.

62. Winklbauer, R., Medina, A., Swain, R.K. & Steinbeisser, H. (2001) Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413, 856-860.

63. Yamada, S. & Nelson, W.J. (2007) Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J Cell Biol 178, 517-527.

64. Zhang, X., Deng, Y., Chang, H., Ji, C., Zhang, M., Peng, J., Xu, T. & Xu, P. (2014) The specific and rapid labeling of cell surface proteins with recombinant FKBP-fused fluorescent proteins. Protein Cell 5, 800-803.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る