リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantitative analyses of the anatomy of the eye in extant reptiles as a basis for inferring the visual sensitivity and diving depth of fossil marine reptiles」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantitative analyses of the anatomy of the eye in extant reptiles as a basis for inferring the visual sensitivity and diving depth of fossil marine reptiles

山下, 桃 東京大学 DOI:10.15083/0002001888

2021.10.04

概要

During the Mesozoic Era, fully aquatically adapted reptiles occupied the niche of the top predator in the marine ecosystem. Despite their crucial roles in those ecosystems, there is only limited knowledge on habitat depths of extinct carnivorous reptiles. For the purpose of inferring the diving depth of mosasaurs (Squamata, Mosasauridae), one of the major clades of Mesozoic marine reptiles, this study is focused on the visual function of non-avian reptiles. Many extant reptiles including birds have skeletal element called the sclerotic ring within their eyes. The sclerotic ring is the only hard structure within the eye that can be preserved in specimens of fossil reptiles and potentially provides useful data for exploring the visual parameters such as the f-number in fossil taxa. Estimated f-numbers serve as important clues for assessing diving behavior of mosasaurs, which will in turn contribute to a better understanding of the Cretaceous marine ecosystem. Thus, the ultimate aim of this study was to reveal the diving behavior, especially its depth, of mosasaurs based on f-numbers of their eyes calculated using reconstructed dimensions of soft tissue structures.

Firstly, I measured the degree of shrinkage in soft and hard tissue structures in squamate eyes through fixation as well as staining an iodine potassium iodide (I2KI) solution used for distinguishing soft tissue structures based on CT scanning. Among different species of lizards examined here, the lens diameter followed different trajectories of shrinkage through immersion of 10% neutral buffered formalin and 70% ethanol. In contrast, immersion in a 1% Lugol’s (I2KI) solution resulted in a ubiquitous, rapid decrease in the lens diameter in the all examined species. The obtained results served as a basis for restoring the original dimensions of the eye structures examined in the following chapter.

Then, I investigated the correlation between the soft and hard tissue structures of the eye in extant squamates for the purpose of reconstructing of soft tissue parameters of the eye relevant to the visual sensitivity in fossil squamates. Measurement data were extensively collected on fixed and/or Lugol-stained eye specimens sampled from all major branches of squamate phylogeny (58 species belonging to 54 genera). Based on these measurements, the correlations between the internal diameter of the sclerotic ring and the lens diameter, between the internal diameter of the sclerotic ring and the maximum entrance pupil diameter and between the external diameter of the sclerotic ring and the axial length were analyzed. As a result, all of the dimensions of the sclerotic ring and the relevant soft tissues were found to be significantly and strongly correlated with each other. The lens diameter and the axial length showed significant negative interspecific allometry relative to the internal and external sclerotic ring diameters, respectively. On the other hand, the maximum entrance pupil diameter scales isometrically with the internal sclerotic ring diameter. These correlations have established a quantitative basis for reconstructing dimensions of the soft tissue structures and estimating the visual sensitivity in fossil lizards based the preserved sclerotic ring.

The morphology of the sclerotic ring is also considered closely reflecting the animal lifestyle including aquatic adaptation. However, only birds have been reported having shape differences between the eyes employed for underwater and aerial vision. I herein compared the morphology of the sclerotic ring between aquatic and terrestrial turtles to examine possible differences caused by aquatic adaptation because turtles are the only extant, non-avian reptile clade that contains both full aquatic and terrestrial species. The direct observation and the shape analysis using geometric morphometrics demonstrated that aquatic, semi-aquatic and terrestrial turtles all lack on the sigmoid flexure in the cross section of the sclerotic ring that putatively characterizes the eye of birds employing aerial vision. Thus, this result indicates that the underwater vision has little influence on the sclerotic ring shape in turtle eyes and suggests that the avian condition should not be simply applied to other reptiles in discussing their adaptation to underwater vision.

Then, I analyzed the ability of eyes detecting a low level of light of mosasaurs in order to infer the maximum diving depth. The dimensions of the maximum entrance pupil diameter and the axial length were reconstructed based on measurements of preserved sclerotic ring in 5 species belonging to 4 genera of mosasaurs based on the correlations of the eye structures in extant lizards established in the previous chapter. Then, the f-numbers of mosasaurs eyes were calculated as the ratio of the maximum entrance pupil diameter and the axial length. As a result, the f-numbers of Platecarpus, Clidastes and Mosasaurus were lower than that of Tylosaurus. This result indicated that the former three would have been able to see in a darker and deeper environment, and thus would have potentially been able to dive deeper, than the latter. In particular, Platecarpus, Clidastes and Tylosaurus were sympatric carnivores in the Western Interior Seaway and may have competed for the predatory niche. The result is thus consistent with the hypothesis that the largest form among them, Tylosaurus, dominated the most productive, shallow layer of the water column and excluded other smaller mosasaurs, such as Clidastes and Platecarpus, which exploited the deeper environment to avoid competition.

In summary, this study demonstrated the diversity in the diving depth and possible tiering among mosasaurs based on the size of their sclerotic rings and visual sensitivity inferred based on analyses on extant squamates. The three coeval and sympatric genera compared in this study, Tylosaurus, Platecarpus and Clidastes, were the early-diverging hydropedal mosasaurs that appeared early in mosasaur history, suggesting that different diving depths of mosasaurs had already been established during the early stage of the evolution of mosasaurs. Accordingly, such tiering of the diving depth may have caused ecological and spatial differentiation, and eventually the taxonomic diversity, in mosasaurs.

参考文献

Akkari, N., Enghoff, H., & Metscher, B. D. (2015). A new dimension in documenting new species: high-detail imaging for myriapod taxonomy and first 3D cybertype of a new millipede species (Diplopoda, Julida, Julidae). PLOS ONE, 10(8), e0135243.

Arthur, M. A., Dean, W. E., & Pratt, L. M. (1988). Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335(6192), 714.

Aslanidi, O. V., Nikolaidou, T., Zhao, J., Smaill, B. H., Gilbert, S. H., Holden, A. V., Lowe T., Withers P., Stephenson R., Jarvis J., Hancox J., Boyett M., & Zhang H. (2013). Application of micro-computed tomography with iodine staining to cardiac imaging, segmentation, and computational model development. IEEE Trans. Med. Imaging, 32(1), 8–17.

Atkins, J. B., & Franz-Odendaal, T. A. (2016). The sclerotic ring of squamates: an evo-devo-eco perspective. Journal of Anatomy, 229(4), 503–513.

Atta, A., Ilyas, A., Hashim, Z., Ahmed, A., & Zarina, S. (2014). Lactate dehydrogenase like crystallin: A potentially protective shield for Indian spiny-tailed lizard (Uromastyx hardwickii) lens against environmental stress?. The protein journal, 33(2), 128–134.

Ausich, W. I., & Bottjer, D. J. (1982). Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216(4542), 173–174.

Ballard W. B., Carbyn L. N., & Smith D. W. (2003). Wolf interactions with non-prey. In: Mech LD, Boitani L, eds. Wolves: behavior, ecology, and conservation. Chicago: University of Chicago Press. pp. 259–271.

Banks, M. S., Sprague, W. W., Schmoll, J., Parnell, J. A., & Love, G. D. (2015). Why do animal eyes have pupils of different shapes?. Science Advances, 1(7), e1500391.

Bardet, N. (1992). Stratigraphic evidence for the extinction of the ichthyosaurs. Terra Nova, 4(6), 649–656.

Bardet, N., Pereda Suberbiola, X., Schulp, A. S., & Bouya, B. (2008). New material of Carinodens (Squamata, Mosasauridae) from the Maastrichtian (Late Cretaceous) phosphates of Morocco. In Proceedings of the Second Mosasaur Meeting. Fort Hays Studies, Special 3, 29–36.

Bardet, N., Houssaye, A., Vincent, P., Suberbiola, X. P., Amaghzaz, M., Jourani, E., & Meslouh, S. (2015). Mosasaurids (Squamata) from the Maastrichtian Phosphates of Morocco: biodiversity,palaeobiogeography and palaeoecology based on tooth morphoguilds. Gondwana Research, 27(3), 1068–1078.

Baumgartner, M. F., Cole, T. V., Campbell, R. G., Teegarden, G. J., & Durbin, E. G. (2003).Associations between North Atlantic right whales and their prey, Calanus finmarchicus, over diel and tidal time scales. Marine Ecology Progress Series, 264, 155–166.

Benson, R. B. J., Butler, R. J., Lindgren, J., & Smith, A. S. (2010). Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society B: Biological Sciences, 277(1683), 829–834.

Bell, G. L., Jr. (1995). Middle Turonian (Cretaceous) mosasauroids from Big Bend National Park, Texas. In Santucci,V. L. and McClelland, L. eds. National Park Service Paleontological Research, U. S. Department of the Interior Technical Report NPS/NRPO/NRTR-95/16, pp. 34–39.

Bell, G. L. Jr. (1997). A phylogenetic revision of North American and Adriatic Mosasauroidea. In Callaway, J. M. & Nicholls, E. L. eds. Ancient Marine Reptiles. Academic Press. New York.pp. 293–332.

Bell, G. L. Jr., & Polcyn, M. J. (2005). Dallasaurus turneri, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae(Squamata). Netherlands Journal of Geosciences, 84(3), 177–194.

Bell, G.L. Jr. & VonLoh, J.P., (1998). New records of Turonian mosasauroids from the western United States. In: Martin, J.E., Hogenson, J.W. & Benton, R.C. eds. Partners preserving our past, planning our future. Dakoterra 5: 15–28.

Bengtson, P. (1983). The Cenomanian-Coniacian of the Sergipe Basin, Brazil. Fossils and Strata, 12, 1–78.

Bengtson, P., & Lindgren, J. (2005). First record of the mosasaur Platecarpus Cope, 1869 from South America and its systematic implications. Revista Brasileira de Paleontologia, 8(1), 5– 12.

Benson, R. B. J., Butler, R. J., Lindgren, J., & Smith, A. S. (2010). Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society B: Biological Sciences, 277(1683), 829–834.

Bjork, P. R. (1981). Food habits of mosasaurs from the Pierre Shale of South Dakota. Rocky Mountain Section. In Geological Society of America, Abstracts with Programs, Vol. 13, No. 4, p. 191.

Bonhomme, V., Picq, S., Gaucherel, C., & Claude, J. (2014). Momocs: outline analysis using R.Journal of Statistical Software, 56(13), 1–24.

Bowen, B. W., & Karl, S. A. (1997). Population genetics, phylogeography, and molecular evolution.In Lutz, P. L., & Musick, J. A. eds. The biology of sea turtles, Volume1, CRC press, New York, pp. 29–50.

Boyde, A., & Maconnachie, E. (1980). Treatment with lithium salts reduces ethanol dehydration shrinkage of glutaraldehyde fixed tissue. Histochemistry, 66(2), 181–187.

Brudenall, D. K., Schwab, I. R., & Fritsches, K. A. (2008). Ocular morphology of the Leatherback sea turtle (Dermochelys coriacea). Veterinary Ophthalmology, 11(2), 99–110.

Buchy, M. C., Smith, K. T., Frey, E., Stinnesbeck, W., González, A. G., Ifrim, C., López-Oliva, J.G., & Porras-Muzquiz, H. (2005). Annotated catalogue of marine squamates (Reptilia) from the Upper Cretaceous of northeastern Mexico. Netherlands Journal of Geosciences, 84(3), 195– 205.

Bullard, T. S., & Caldwell, M. W. (2010). Redescription and rediagnosis of the tylosaurine mosasaur Hainosaurus pembinensis Nicholls, 1988, as Tylosaurus pembinensis (Nicholls, 1988).Journal of Vertebrate Paleontology, 30(2), 416–426.

Buono, M. R., Fernández, M. S., & Herrera, Y. (2012). Morphology of the eye of the southern right whales (Eubalaena australis). The Anatomical Record, 295(2), 355–368.

Bush, A. M., & Bambach, R. K. (2011). Paleoecologic megatrends in marine metazoa. Annual Review of Earth and Planetary Sciences, 39, 241–269.

Buytaert, J., Goyens, J., De Greef, D., Aerts, P., & Dirckx, J. (2014). Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy (LSFM). Microscopy and Microanalysis, 20(4), 1208–1217.

Caldwell, M. W. (1996). Ontogeny and phylogeny of the mesopodial skeleton in mosasauroid reptiles. Zoological Journal of the Linnean Society, 116(4), 407–436.

Caldwell, M. W. (2002). From fins to limbs to fins: limb evolution in fossil marine reptiles. American Journal of Medical Genetics, 112(3), 236–249.

Caldwell, M. W., & Palci, A. (2007). A new basal mosasauroid from the Cenomanian (U. Cretaceous) of Slovenia with a review of mosasauroid phylogeny and evolution. Journal of Vertebrate Paleontology, 27(4), 863–880.

Caprette, C. L., Lee, M. S., Shine, R., Mokany, A., & Downhower, J. F. (2004). The origin of snakes (Serpentes) as seen through eye anatomy. Biological Journal of the Linnean Society, 81(4), 469–482.

Carroll R. L. (1997). Mesozoic marine reptiles as models of long-term, large-scale evolutionary phenomena. In: Callaway J. M. & Nicholls E. L. eds. Ancient Marine Reptiles. Academic Press. New York. pp. 467–489.

Chen, X. H., Motani, R., Cheng, L., Jiang, D. Y., & Rieppel, O. (2014). The enigmatic marine reptile Nanchangosaurus from the Lower Triassic of Hubei, China and the phylogenetic affinities of Hupehsuchia. PLOS ONE, 9(7), e102361.

Cherel, Y., Fontaine, C., Richard, P., & Labatc, J.-P. (2010). Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnology and Oceanography, 55, 324–332.

Cicimurri, D. J., & Everhart, M. J. (2001). An elasmosaur with stomach contents and gastroliths from the Pierre Shale (Late Cretaceous) of Kansas. Transactions of the Kansas Academy of Science, 104(3), 129–143.

Conrad, J. L. (2008). Phylogeny and systematics of Squamata (Reptilia) based on morphology.Bulletin of the American Museum of Natural History, 310, 1-182.

Corrado, C. A., Wilhelm, D. A., Shimada, K. & Everhart, M. J. (2003). A new skeleton of the Late Cretaceous lamniform shark, Cretoxyrhina mantelli, from western Kansas. Journal of Vertebrate Paleontology, 23 (Suppl. to 3), 43A.

Cott, H. B. (1940). Adaptive coloration in animals. Methuen; London.

Coulombre, A. J., & Coulombre, J. L. (1973). The skeleton of the eye: II. Overlap of the scleral ossicles of the domestic fowl. Developmental Biology, 33(2), 257–267.

Crampton, J. S. (1995). Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia, 28(2), 179–186.

Creel, S. (2001). Four factors modifying the effect of competition on carnivore population dynamics as illustrated by African wild dogs. Conservation Biology, 15(1), 271–274.

Currey, J. D., Brear, K., Zioupos, P., & Reilly, G. C. (1995). Effect of formaldehyde fixation on some mechanical properties of bovine bone. Biomaterials, 16(16), 1267–1271.

Curtis, E. L., & Miller, R. C. (1938). The sclerotic ring in North American birds. The Auk, 55(2), 225–243.

Davenport, J. (1997). Temperature and the life-history strategies of sea turtles. Journal of Thermal Biology, 22(6), 479–488.

Daza, J. D., Bauer, A. M., Wagner, P., & Böhme, W. (2013). A reconsideration of Sphaerodactylus dommeli Böhme, 1984 (Squamata: Gekkota: Sphaerodactylidae), a Miocene lizard in amber. Journal of Zoological Systematics and Evolutionary Research, 51(1), 55–63.

Detwiler, S. R. (1955). The eye and its structural adaptations. Proceedings of the American Philosophical Society, 99(4), 224–238.

Dollo, L. (1889) Première note sur les mosasauriens de Mesvin. Bulletin de la Société Belge de Geologie, de Paleontolgie et d'Hydrologie, 3, 271–304.

Donadio, E., & Buskirk, S. W. (2006). Diet, morphology, and interspecific killing in Carnivora. The American Naturalist, 167(4), 524–536.

Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., & Karl, D. M. (2009). Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences, 106(30), 12235–12240.

Duke-Elder, S. (1958). System of Ophthalomogy, Vol. 1. Henry Kimpton, London, 906 p.

Düring, D. N., Ziegler, A., Thompson, C. K., Ziegler, A., Faber, C., Müller, J., Scharff, C., & Elemans, C. P. (2013). The songbird syrinx morphome: a three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ. BMC biology, 11(1), 1.

Eckert, K. L., & Eckert, S. A. (1988). Pre-reproductive movements of leatherback sea turtles (Dermochelys coriacea) nesting in the Caribbean. Copeia, 400–406.

Eckert, S. A., Eckert, K. L., Ponganis, P., & Kooyman, G. L. (1989). Diving and foraging behavior of leatherback sea turtles (Dermochelys coriacea). Canadian journal of zoology, 67(11), 2834–2840.

Edinger T. (1929) Uber knocherne Scleralringe. Zoologische Jahrbücher. Abteilung für Systematik, Geographie und Biologie der Tiere, 51: 163–226.

Elliott, J. C., & Dover, S. D. (1982). X-ray microtomography. Journal of Microscopy, 126(2), 211– 213.

Everhart, M. J. (2001). Revisions to the biostratigraphy of the Mosasauridae (Squamata) in the Smoky hill Chalk Member of the Niobrara Chalk (Late Cretaceous) of Kansas. Transactions of the Kansas Academy of Science 104, 59–78.

Everhart, M. J. (2004). Late Cretaceous interaction between predators and prey. Evidence of feeding by two species of shark on a mosasaur. PalArch, Vertebrate Palaeontology Series, 1(1), 1–7.

Everhart, M. J. (2005). Tylosaurus kansasensis, a new species of tylosaurine (Squamata, Mosasauridae) from the Niobrara Chalk of western Kansas, USA. Netherlands Journal of Geosciences, 84(3), 231–240.

Fahlman, A., Olszowka, A., Bostrom, B., & Jones, D. R. (2006). Deep diving mammals: Dive behavior and circulatory adjustments contribute to bends avoidance. Respiratory Physiology and Neurobiology,153, 66–77.

Fernández-Juricic, E., Erichsen, J. T., & Kacelnik, A. (2004). Visual perception and social foraging in birds. Trends in Ecology & Evolution, 19(1), 25–31.

Fernández, E., Pelayo, F., Romero, S., Bongard, M., Marin, C., Alfaro, A., & Merabet, L. (2005).Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. Journal of Neural Engineering, 2(4), R1–12.

Ferson, S., Rohlf, F. J., & Koehn, R. K. (1985). Measuring shape variation of two-dimensional outlines. Systematic Biology, 34(1), 59–68.

Fischer, V., Arkhangelsky, M. S., Uspensky, G. N., Stenshin, I. M., & Godefroit, P. (2014). A new Lower Cretaceous ichthyosaur from Russia reveals skull shape conservatism within Ophthalmosaurinae. Geological Magazine, 151(1), 60–70.

Foffa, D., Cuff, A. R., Sassoon, J., Rayfield, E. J., Mavrogordato, M. N., & Benton, M. J. (2014). Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia: Sauropterygia) from Weymouth Bay, Dorset, UK. Journal of Anatomy, 225(2), 209–219.

Fox, C. H., Johnson, F. B., Whiting, J., & Roller, P. P. (1985). Formaldehyde fixation. Journal of Histochemistry & Cytochemistry, 33(8), 845–853.

Franz-Odendaal, T. A. (2006). Intramembranous ossification of scleral ossicles in Chelydra serpentina. Zoology, 109(1), 75–81.

Franz-Odendaal, T. A. (2008). Scleral ossicles of teleostei: Evolutionary and developmental trends. The Anatomical Record, 291(2), 161–168.

Franz-Odendaal, T. A., & Vickaryous, M. K. (2006). Skeletal elements in the vertebrate eye and adnexa: morphological and developmental perspectives. Developmental Dynamics, 235(5), 1244–1255.

Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist, 160(6), 712–726.

Fritsches, K. A., Brill, R. W., & Warrant, E. J. (2005). Warm eyes provide superior vision in swordfishes. Current Biology, 15(1), 55–58.

Fritzberg W. (1912). Beiträge zur Kenntnis des Akkommodationsapparates bei Reptilien. Arch Vergl Ophthalmol 3:292–322.

Fröbisch, N. B., Fröbisch, J., Sander, P. M., Schmitz, L., & Rieppel, O. (2013). Macropredatory ichthyosaur from the Middle Triassic and the origin of modern trophic networks. Proceedings of the National Academy of Sciences, 110(4), 1393–1397.

Garamszegi, L. Z., Møller, A. P., & Erritzøe, J. (2002). Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proceedings of the Royal Society of London B: Biological Sciences, 269(1494), 961–967.

Gasparini, Z., Bardet, N., Martin, J. E., & Fernandez, M. (2003). The elasmosaurid plesiosaur Aristonectes Cabrera from the latest Cretaceous of South America and Antarctica. Journal of Vertebrate Paleontology, 23(1), 104–115.

Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., & Behlke, A. D. (2012). Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53(1), 3–308.

Gignac, P. M., & Kley, N. J. (2014). Iodine-enhanced micro-CT imaging: Methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 322(3), 166–176.

Goldfuss, A. (1845). Der schädelbau des Mosasaurus, durch beschreibung einer neuen art dieser gattung erläutert. Nova Acta Academa Ceasar Leopoldino-Carolinae Germanicae Natura Curiosorum 21: 1–28.

Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41(4), 587– 638.

Gower, D.J. & Wilkinson, M. (2005). Conservation Biology of caecilian amphibians. Conservation Biology, 19(1), 45–55.

Grigor’ev, D. V., Averianov, A. O., Arkhangelsky, M. S., Pervushov, E. M., & Zozyrev, N. Y. (2009). A mosasaur from the Cenomanian of Russia. Paleontological Journal, 43(3), 311– 317.

Gunter, R. (1951). The absolute threshold for vision in the cat. The Journal of Physiology, 114(1-2), 8–15.

Hall, M. I. (2008a). Comparative analysis of the size and shape of the lizard eye. Zoology, 111(1), 62–75.

Hall, M. I. (2008b). The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds. Journal of Anatomy, 212(6), 781– 794.

Hall, M. I. (2009). The relationship between the lizard eye and associated bony features: a cautionary note for interpreting fossil activity patterns. The Anatomical Record, 292(6), 798– 812.

Hall, M. I., & Ross, C. F. (2007). Eye shape and activity pattern in birds. Journal of Zoology, 271(4), 437–444.

Hall, M. I., Iwaniuk, A. N., & Gutiérrez-Ibáñez, C. (2009). Optic foramen morphology and activity pattern in birds. The Anatomical Record, 292(11), 1827–1845.

Hallgrímsson, B., Lieberman, D. E., Liu, W., Ford-Hutchinson, A. F., & Jirik, F. R. (2007).Epigenetic interactions and the structure of phenotypic variation in the cranium. Evolution & Development, 9(1), 76–91.

Hampe, O. (2005). Considerations on a Brachauchenius skeleton (Pliosauroidea) from the lower Paha Formation (late Barremian) of Villa de Leyva area (Colombia). Fossil Record, 8, 37–51.

Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). Geiger: investigating evolutionary radiations. Bioinformatics, 24(1), 129–131.

Harrell, Jr, T. L., Pérez-Huerta, A., & Suarez, C. A. (2016). Endothermic mosasaurs? Possible thermoregulation of Late Cretaceous mosasaurs (Reptilia, Squamata) indicated by stable oxygen isotopes in fossil bioapatite in comparison with coeval marine fish and pelagic seabirds. Palaeontology, 59(3), 351–363.

Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology (Vol. 239).Oxford University Press, Oxford, 248 p.

Hattin, D. E. (1982). Stratigraphy and depositional environment of Smoky Hill Chalk Member, Niobrara Chalk (Upper Cretaceous) of the type area, western Kansas. Kansas Geological Survey Bulletin, 225, 108 p.

Hattin, D. E. (1996). Fossilized regurgitate from Smoky Hill Member of Niobrara Chalk (Upper Cretaceous) of Kansas, USA. Cretaceous Research 17: 443–450.

Heesy, C. P., & Ross, C. F. (2001). Evolution of activity patterns and chromatic vision in primates: morphometrics, genetics and cladistics. Journal of Human Evolution, 40(2), 111–149.

Henderson, R. A., & Price, G. D. (2012). Paleoenvironment and paleoecology inferred from oxygen and carbon isotopes of subtropical mollusks from the Late Cretaceous (Cenomanian) of Bathurst Island, Australia. Palaios, 27(9), 617–626.

Hendrickson, J. R. (1980). The ecological strategies of sea turtles. American Zoologist, 20(3), 597– 608.

Herbin, J.P., Montadert, L., Müller, C, Gomez, R., Thurow, J., & Wiedmann, J., (1986). Organic- rich sedimentation at the Cenomanian-Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. In Summerhayes, C.P., & Shackleton, N.J., eds. North Atlantic palaeoceanography: Geological Society of London, Special Publication 21, pp. 389–422.

Herdina, A. N., Herzig-Straschil, B., Hilgers, H., Metscher, B. D., & Plenk Jr, H. (2010).

Histomorphology of the penis bone (Baculum) in the gray long-eared bat Plecotus austriacusChiroptera, Vespertilionidae). The Anatomical Record, 293(7), 1248–1258.

Herdina, A. N., Kelly, D. A., Jahelková, H., Lina, P. H., Horáček, I., & Metscher, B. D. (2015).Testing hypotheses of bat baculum function with 3D models derived from microCT. Journal of Anatomy, 226(3), 229–235.

Hochscheid, S., & Wilson, R. P. (1999). A new method for the determination of at-sea activity in sea turtles. Marine Ecology Progress Series, 185, 293–296.

Hooker, S. K., & Baird, R. W. (1999). Deep–diving behaviour of the northern bottlenose whale, Hyperoodon ampullatus (Cetacea: Ziphiidae). Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1420), 671–676.

Houssaye, A. (2013). Palaeoecological and morphofunctional interpretation of bone mass increase: an example in Late Cretaceous shallow marine squamates. Biological Reviews, 88(1), 117– 139.

Houssaye, A., & Bardet, N. (2012). Rib and vertebral micro-anatomical characteristics of hydropelvic mosasauroids. Lethaia, 45(2), 200–209.

Howland, H. C., & Sivak, J. G. (1984). Penguin vision in air and water. Vision Research, 24(12), 1905–1909.

Humphries, S., & Ruxton, G.D. (2002). Why did some ichthyosaurs have such large eyes?. The Journal of Experimental Biology, 205, 439–441.

Huxley, A. (1932). Problems of relative growth. The Dial Press, New York, 276 pp.

Jacobs, L. L., Ferguson, K., Polcyn, M. J., & Rennison, C. (2005). Cretaceous δ 13 C stratigraphy and the age of dolichosaurs and early mosasaurs. Netherlands Journal of Geosciences, 84(3), 257–268.

Jerlov, N. G. (1976). Marine optics. Elsevier Science, Amsterdam, 230 p.

Jiménez-Huidobro, P., Simões, T. R., & Caldwell, M. W. (2017). Mosasauroids from Gondwanan Continents. Journal of Herpetology, 51(3), 355–364.

Johnson, W. E., Fuller, T. K., & Franklin, W. L. (1996). Sympatry in canids: a review and assessment. Carnivore Behavior, Ecology, and Evolution, 2, 189–218.

Katzir, G., & Howland, H. C. (2003). Corneal power and underwater accommodation in great cormorants (Phalacrocorax carbo sinensis). Journal of Experimental Biology, 206(5), 833– 841.

Kauffman, E. G. (1977). Geological and biological overview: Western Interior Cretaceous basin.The Mountain Geologist, 14, 75–99.

Kauffman, E. G., & Kesling, R. V. (1960). An Upper Cretaceous ammonite bitten by a mosasaur.Contributions from the Museum of Paleontology, University of Michigan, 15(9), 193–248.

Kay, R. F., & Cartmill, M. (1977). Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea,? Primates), with a description of a new genus and species. Journal of Human Evolution, 6(1), 19–53.

Kay, R. F., & Kirk, E. C. (2000). Osteological evidence for the evolution of activity pattern and visual acuity in primates. American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists, 113(2), 235–262.

Keller, T. (1976). Magen- und Darminhalte von Ichthyosauriern des süddeutschen Posidonienschiefers. Neues Jahrbuch für Geologie und Paläontologie, Monatschefte, 5, 266– 283.

Kiernan, C. R. (2002). Stratigraphic distribution and habitat segregation of mosasaurs in the Upper Cretaceous of western and central Alabama, with an historical review of Alabama mosasaur discoveries. Journal of Vertebrate Paleontology, 22(1), 91–103.

Kirk, E. C. (2004). Comparative morphology of the eye in primates. The Anatomical Record, 281(1), 1095–1103.

Kirk, E. C. (2006). Effects of activity pattern on eye size and orbital aperture size in primates.Journal of Human Evolution, 51(2), 159–170.

Kleinteich, T., Conway, K. W., Gorb, S. N., & Summers, A. P. (2014). What’s inside a fishy suction cup. Bruker microCT User Meeting Abstracts, 14, 1–4.

Kleinteich, T., & Gorb, S. N. (2016). Frog tongue surface microstructures: functional and evolutionary patterns. Beilstein Journal of Nanotechnology, 7, 893–903.

Konishi, T., & Caldwell, M. W. (2009). New material of the mosasaur Plioplatecarpus nichollsae Cuthbertson et al., 2007, clarifies problematic features of the holotype specimen. Journal of Vertebrate Paleontology, 29(2), 417–436.

Konishi, T., & Caldwell, M. W. (2011). Two new plioplatecarpine (Squamata, Mosasauridae) genera from the Upper Cretaceous of North America, and a global phylogenetic analysis of plioplatecarpines. Journal of Vertebrate Paleontology, 31(4), 754–783.

Konishi, T., Lindgren, J., Caldwell, M. W., & Chiappe, L. (2012). Platecarpus tympaniticus (Squamata, Mosasauridae): osteology of an exceptionally preserved specimen and its insights into the acquisition of a streamlined body shape in mosasaurs. Journal of Vertebrate Paleontology, 32(6), 1313–1327.

Konishi, T., Newbrey, M. G., & Caldwell, M. W. (2014). A small, exquisitely preserved specimen of Mosasaurus missouriensis (Squamata, Mosasauridae) from the upper Campanian of the Bearpaw Formation, western Canada, and the first stomach contents for the genus. Journal of Vertebrate Paleontology, 34(4), 802–819.

Kooyman, G. L., & Kooyman, T. G. (1995). Diving behavior of emperor penguins nurturing chicks at Coulman Island, Antarctica. The Condor, 97(2), 536–549.

Koutsoukos, E. A. M., & Bengtson, P. (1993). Towards an integrated biostratigraphy of the upper Aptian-Maastrichtian of the Sergipe Basin, Brazil. Documents du Laboratoire de Géologie de Lyon, 125, 241–262.

Kröger, R. H., & Katzir, G. (2008). Comparative anatomy and physiology of vision in aquatic tetrapods. In Thewissen, J. G. M. ed. Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates, University of California Press, London, pp.121–147.

Kuypers, M. M., Pancost, R. D., Nijenhuis, I. A., & Sinninghe Damsté, J. S. (2002). Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography, 17(4), 3–1.

Land, M. F. (1981). Optics of the eyes of Phronima and other deep-sea amphipods. Journal of Comparative Physiology, 145(2), 209–226.

Land M. F., & Nilsson, D-E. (2002). Animal Eyes. Oxford University Press, Oxford, 121 p.

Landman, N. H., Cochran, J. K., Larson, N. L., Brezina, J., Garb, M. P., And harries, P. J. (2012).Methane seeps as ammonite habitats in the U.S. Western Interior Seaway revealed by isotopic analyses of well-preserved shell material. Geology, 40(6), 507–510.

Lane, N. E., Bloch, D. A., Jones, H. H., Marshall, W. H., Wood, P. D., & Fries, J. F. (1986). Long- distance running, bone density, and osteoarthritis. Jama, 255(9), 1147–1151.

Lautenschlaeger, I. E., Hartmann, A., Sicken, J., Mohrs, S., Scholz, V. B., Neiger, R., & Kramer, M. (2013). Comparison between computed tomography and 99mTC- pertechnetate scintigraphy characteristics of the thyroid gland in cats with hyperthyroidism. Veterinary Radiology & Ultrasound, 54(6), 666–673.

Lee, M. S. (2005). Squamate phylogeny, taxon sampling, and data congruence. Organisms Diversity & Evolution, 5(1), 25–45.

Levenson, D. H., & Schusterman, R. J. (1999). Dark adaptation and visual sensitivity in shallow and deep-diving pinnipeds. Marine Mammal Science, 15(4), 1303–1313.

Leuckart, R. (1875). Organologie des auges. In Graefe, A., & Saemisch T., eds. Handbuch der Gesamten Augen- heilkunde, Zweiter Band, Erste Hälfte. Anatomie und Physiologie, Zweiter Theil, Erste Hälfte, Verlag von Wilhelm Engelmann, Leipzig, pp. 145–301.

Lima, F. C., Vieira, L. G., Santos, A. L. Q., De Simone, S. B. S., Hirano, L. Q. L., Silva, J. M. M., & Romão, M. F. (2009). Anatomy of the scleral ossicles in brazilian birds. Brazilian Journal of Morphological Science, 26, 165–169.

Lindgren, J. (2004). Stratigraphical distribution of Campanian and Maastrichtian mosasaurs in Sweden–evidence of an intercontinental marine extinction event?. GFF, 126(2), 221–229.

Lindgren, J., & Siverson, M. (2004). The first record of the mosasaur Clidastes from Europe and its palaeogeographical implications. Acta Palaeontologica Polonica, 49(2), 219–234.

Lindgren, J., Jagt, J. W., & Caldwell, M. W. (2007). A fishy mosasaur: the axial skeleton ofPlotosaurus (Reptilia, Squamata) reassessed. Lethaia, 40(2), 153–160.

Lindgren, J., Caldwell, M. W., Konishi, T., & Chiappe, L. M. (2010). Convergent evolution in aquatic tetrapods: insights from an exceptional fossil mosasaur. PLOS ONE, 5(8), e11998.

Lindgren, J., Polcyn, M. J., & Young, B. A. (2011). Landlubbers to leviathans: evolution of swimming in mosasaurine mosasaurs. Paleobiology, 37(3), 445–469.

Lisney, T. J., Iwaniuk, A. N., Bandet, M. V., & Wylie, D. R. (2012). Eye shape and retinal topography in owls (Aves: Strigiformes). Brain, Behavior and Evolution, 79(4), 218–236.

Longrich, N. I. C. K. (2010). The function of large eyes in Protoceratops: a nocturnal ceratopsian. In Ryan, M. J., Chinnery-Allgeier, B. J., & Eberth, D. A., eds., New Perspectives on Horned Dinosaurs, The Royal Tyrrell Museum Ceratopsian Symposium, Bloomington and Indianapolis, Indiana University Press, pp. 308–327.

Loyau, A., Jalme, M. S., & Sorci, G. (2005). Intra-and intersexual selection for multiple traits in the peacock (Pavo cristatus). Ethology, 111(9), 810–820.

Loyau, A., Gomez, D., Moureau, B., Théry, M., Hart, N. S., Jalme, M. S., Bennett, A. T. D., & Sorci, G. (2007). Iridescent structurally based coloration of eyespots correlates with mating success in the peacock. Behavioral Ecology, 18(6), 1123–1131.

Lukeneder, A., Harzhauser, M., Müllegger, S., & Piller, W. E. (2010). Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C). Earth and Planetary Science Letters, 296(1-2), 103–114.

Luria, S. M., & Kinney, J. A. S. (1970). Underwater vision. Science, 167(3924), 1454-1461. Lythgoe J. N. (1979). The Ecology of Vision. Clarendon Press, Oxford, 244 p.

Maddison, W. P., & Maddison, D.R. (2018). Mesquite: a modular system for evolutionary analysis.Version 3.51 http://www.mesquiteproject.org.

Malmström, T., & Kröger, R. H. (2006). Pupil shapes and lens optics in the eyes of terrestrial vertebrates. Journal of Experimental Biology, 209(1), 18–25.

Marsh O. C. (1872). Discovery of the dermal scutes of mosasaurid reptiles. American Journal of Science, 16, 290–292.

Marsh, O. C. (1880). New characters of mosasauroid reptiles. American Journal of Science, 109, 83– 87.

Marshall, D. (1953). Glioma of the optic nerve as a manifestation of von Recklinghausen's disease. American Journal of Ophthalmology, 51(1), 117–155.

Marshall, N. B. (1979). Developments in deep-sea biology. Blandford Press, Poole, 566 p.

Martin, G. R. (1982). An owl's eye: Schematic optics and visual performance in Strix aluco L. Journal of Comparative Physiology, 145(3), 341–349.

Martin, G. R. (1983). Schematic eye models in vertebrates. In Ottoson D., Autrum H., Perl E. R., Schmidt R. F., Shimazu H., & Willis W.D. eds., Progress in Sensory Physiology, vol 4.Springer, Berlin, pp.43–81.

Martin, G. R. (1985). Eye. In King A. S., & McClelland J. eds., Form and function in birds, vol. 3, Academic Press, London, pp. 311–373.

Martin, G. R. (1990). Birds by night. T & AD Poyser, London, 240 p.

Martin, G. R., & Young, S. R. (1984). The eye of the Humboldt Penguin, Spheniscus humboldt: visual fields and schematic optics. Proceedings of the Royal Society of London B: Biological Sciences, 223(1231), 197–222.

Martin, G. R., & Brooke, M. D. L. (1991). The eye of a procellariiform seabird, the Manx shearwater, Puffinus puffinus: visual fields and optical structure. Brain, Behavior and Evolution, 37(2), 65–78.

Martin, G., R., L. M., Ramírez, Y., & McNeil, R. (2004). The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity. Naturwissenschaften, 91(1), 26–29.

Martin, J. E. & Bjork, P.R., (1987). Gastric residues associated with a mosasaur from the Late Cretaceous (Campanian) Pierre Shale in South Dakota. In: Martin, J.E., Ostrander, G.E. eds., Papers in Vertebrate Paleontology in honor of Morton Green. Dakoterra 3, pp. 68–72.

Martin, J. E., & Kennedy, L. E. (1988). A plesiosaur with stomach contents from the Late Cretaceous (Campanian) Pierre Shale of South Dakota: A preliminary report. Proceedings of the South Dakota Academy of Science, 67, 76–79.

Martin, J. E., & Fox, J. E. (2007). Stomach contents of Globidens, a shell-crushing mosasaur (Squamata), from the Late Cretaceous Pierre Shale Group, Big Bend area of the Missouri River, central South Dakota. In Martin, J. E., & Parris, D. C., eds., The geology and paleontology of the Late Cretaceous marine deposits of the Dakotas. The Geological Society of America Special Paper, 427, 167–176.

Martin, L. D., & Stewart, J. D. (1977). The oldest (Turonian) mosasaurs from Kansas. Journal of Paleontology, 51(5), 973–975.

Martin, M. G. (1998). An eye directed outward. In Wright C., Smith B. & Macdonald C. eds.,Knowing Our Own Minds. Oxford University Press, Oxford, pp. 99–121.

Massare, J. A. (1987). Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology, 7(2), 121–137.

Massare, J. A. (1997). Faunas, behavior, and evolution: introduction. In Callaway, J.M. & Nicholls,E.L. eds., Ancient Marine Reptiles. Academic Press, San Diego, pp. 401–421.

Mäthger, L. M., Litherland, L., & Fritsches, K. A. (2007). An anatomical study of the visual capabilities of the green turtle, Chelonia mydas. Copeia, 2007(1), 169–179.

Maxwell, E. E., Fernández, M. S., & Schoch, R. R. (2012). First diagnostic marine reptile remains from the Aalenian (Middle Jurassic): a new ichthyosaur from southwestern Germany. PLOS ONE, 7(8), e41692.

Maxwell, S. M., Frank, J. J., Breed, G. A., Robinson, P. W., Simmons, S. E., Crocker, D. E., Gallo- Reynoso, J. P., & Costa, D. P. (2012). Benthic foraging on seamounts: A specialized foraging behavior in a deep-diving pinniped. Marine Mammal Science, 28(3), E333–E344.

McGowan, C. (1973). The cranial morphology of the Lower Liassic latipinnate ichthyosaurs of England: British Museum (Natural History) Bulletin, Geology, 24, pp. 1–109.

McGowan, C. (1996). A new and typically Jurassic ichthyosaur from the Upper Triassic of British Columbia. Canadian Journal of Earth Sciences, 33(1), 24–32.

McGowan, C. & Motani, R. (2003). Ichthyopterygia. In Sues, H.-D. ed., Handbook of Paleoherpetology, Part 8. Verlag Dr Friedrich Pfeil, Munich, 175 p.

McNeil D. H. (1984) The eastern facies of the Cretaceous system in the Canadian Western Interior; In Stott D. F., Glass D. J., eds., The Mesozoic of Middle North America. A Selection of Papers from the Symposium on the Mesozoic of Middle North America, Calgary, Alberta, Canada — Memoir 9. pp. 145–171.

Metscher, B. D. (2009a). MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Developmental Dynamics: an official publication of the American Association of Anatomists, 238(3), 632–640.

Metscher, B. D. (2009b). MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC physiology, 9(1), 11.

Moriya, K. (2015). Evolution of habitat depth in the Jurassic–Cretaceous ammonoids. Proceedings of the National Academy of Sciences, 112(51), 15540–15541.

Moriya, K., Nishi, H., Kawahata, H., Tanabe, K., & Takayanagi, Y. (2003). Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology, 31(2), 167–170.

Motani, R. (2005). Evolution of fish-shaped reptiles (Reptilia: Ichthyopterygia) in their physical environments and constraints. Annual Review of Earth and Planetary Sciences, 33, 395–420.

Motani, R. (2009). The evolution of marine reptiles. Evolution: Education and Outreach, 2(2), 224– 235.

Motani, R., & Schmitz, L. (2011). Phylogenetic versus functional signals in the evolution of form– function relationships in terrestrial vision. Evolution: International Journal of Organic Evolution, 65(8), 2245–2257.

Motani, R., Rothschild, B. M., & Wahl Jr, W. (1999). Large eyeballs in diving ichthyosaurs. Nature, 402(6763), 747.

Motani, R., Jiang, D. Y., Chen, G. B., Tintori, A., Rieppel, O., Ji, C., & Huang, J. D. (2015). A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature, 517(7535), 485–488.

Munk, O., & Frederiksen, R. D. (1974). On the function of aphakic apertures in teleosts.Videnskabelige meddelelser fra Dansk naturhistorisk forening i København, 137, 65–94.

Nakano, S. (1995). Competitive interactions for foraging microhabitats in a size-structured interspecific dominance hierarchy of two sympatric stream salmonids in a natural habitat. Canadian Journal of Zoology, 73(10), 1845–1854.

Nelson, J. L., Cypher, B. L., Bjurlin, C. D., & Creel, S. (2007). Effects of habitat on competition between kit foxes and coyotes. The Journal of Wildlife Management, 71(5), 1467–1475.

Neues, F., Goerlich, R., Renn, J., Beckmann, F., & Epple, M. (2007). Skeletal deformations in medaka (Oryzias latipes) visualized by synchrotron radiation micro-computer tomography (SRµCT). Journal of Structural Biology, 160(2), 236–240.

Nicholls, E. L. (1988). Marine vertebrates of the Pembina Member of the Pierre Shale (Campanian, Upper Cretaceous) of Manitoba and their significance to the biogeography of the Western Interior Seaway: Unpublished Ph.D. dissertation, University of Calgary, Calgary, 317 p.

Nicholls, E. L., & Russell, A. P. (1990). Paleobiogeography of the Cretaceous Western Interior Seaway of North America: the vertebrate evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 79(1-2), 149–169.

Northmore, D. P. M., & Granda, A. M. (1991). Ocular dimensions and schematic eyes of freshwater and sea turtles. Visual Neuroscience, 7(6), 627–635.

Obradovich J. D. (1993) A Cretaceous time scale. In W.G.E. Caldwell and E.G. Kauffman eds., Evolution of the Western Interior Basin. Geological Association of Canada, Special Paper, v. 39, p. 379–396.

Ott, M. (2006). Visual accommodation in vertebrates: mechanisms, physiological response and stimuli. Journal of Comparative Physiology A, 192(2), 97.

Ott, M., Ostheim, J., & Sherbrooke, W. C. (2004). Prey snapping and visual distance estimation in Texas horned lizards, Phrynosoma cornutum. Journal of Experimental Biology, 207(17), 3067–3072.

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877– 884.

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics, 20(2), 289–290.

Parsons, D. W., Morgan, K., Donnelley, M., Fouras, A., Crosbie, J., Williams, I., Boucher, R. C., Uesugi, K., Yagi, N., & Siu, K. K. (2008). High-resolution visualization of airspace structures in intact mice via synchrotron phase-contrast X-ray imaging (PCXI). Journal of Anatomy, 213(2), 217–227.

Pauwels, E., Van Loo, D., Cornillie, P., Brabant, L., & Van Hoorebeke, L. (2013). An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging. Journal of Microscopy, 250(1), 21–31.

Pettigrew, J. D., Collin, S. P., & Ott, M. (1999). Convergence of specialised behaviour, eye movements and visual optics in the sandlance (Teleostei) and the chameleon (Reptilia). Current Biology, 9(8), 421–424.

Pilgrim, B. L., & Franz-Odendaal, T. A. (2009). A comparative study of the ocular skeleton of fossil and modern chondrichthyans. Journal of Anatomy, 214(6), 848–858.

Plisnier-Ladame, F., & Coupatez, P., (1969). Étude morphologique de l’anneau sclrotique de Mosasaurus hoffmanni Mantell, 1829. Bulletin Belgische Vereniging Geologie Paleontologie Hydrologie, 78, 253–265.

Polcyn, M. J., Bell, G. L. Jr, Shimada, K., & Everhart, M. J. (2008). The oldest North American mosasaurs (Squamata: Mosasauridae) from the Turonian (Upper Cretaceous) of Kansas and Texas with comments on the radiations of major mosasaur clades. In Everhart M. J., editor. Proceedings of the Second Mosasaur Meeting. Hays: Fort Hays State University, 137–155.

Polcyn, M. J., Jacobs, L. L., Araújo, R., Schulp, A. S., & Mateus, O. (2014). Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 400, 17–27.

Pritchard, P. C. (1973). International migrations of South American sea turtles (Cheloniidae and Dermochelidae). Animal Behaviour, 21(1), 18–27.

Prokofiev, A. M. (2014). Deepsea herrings (Bathyclupeidae) of the northwestern Pacific ocean.Journal of Ichthyology, 54(2), 137–145.

Pyron, R. A. (2017). Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Systematic Biology, 66(1), 38–56.

Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13(1), 93.

Raup, D. M. (1979). Size of the Permo-Triassic bottleneck and its evolutionary implications.Science, 206(4415), 217–218.

Reeder, T. W., Townsend, T. M., Mulcahy, D. G., Noonan, B. P., Wood Jr, P. L., Sites Jr, J. W., & Wiens, J. J. (2015). Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLOS ONE, 10(3), e0118199.

Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217–223.

Reymond, L., & Wolfe, J. (1981). Behavioural determination of the contrast sensitivity function of the eagle Aquila audax. Vision Research, 21(2), 263–271.

Ricqlès, A. de & Buffrénil, V. de (2001). Bone histology, heterochronies and the return of tetrapods to life in water: where are we?. In Mazin J.-M. and de Buffrénil V. eds., Secondary Adaptation of Tetrapods to Life in Water, Verlag Dr. Friedrich Pfeil, Munich, pp. 289–310.

Röll, B. (2000). Carotenoid and retinoid—two pigments in a gecko eye lens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 125(1), 105–112.

Röll, B. (2001). Multiple origin of diurnality in geckos: evidence from eye lens crystallins.Naturwissenschaften, 88(7), 293–296.

Röll, B., & Schwemer, J. (1999). ι-Crystallin and vitamin A2 isomers in lenses of diurnal geckos.Journal of Comparative Physiology A, 185(1), 51–58.

Röll, B., Amons, R., & de Jong, W. W. (1996). Vitamin A2 bound to cellular retinol-binding protein as ultraviolet filter in the eye lens of the Gecko Lygodactylus picturatus. Journal of Biological Chemistry, 271(18), 10437–10440.

Romer A. S. (1966). Vertebrate paleontology (3rd edition). University of Chicago Press, Chicago, 468 pp.

Ross, M. R. (2009). Charting the Late Cretaceous seas: mosasaur richness and morphological diversification. Journal of Vertebrate Paleontology, 29(2), 409–416.

Ross, C. F., & Kirk, E. C. (2007). Evolution of eye size and shape in primates. Journal of Human Evolution, 52(3), 294–313.

Rothschild, B. M. (1991). Stratophenetic analysis of avascular necrosis in turtles: affirmation of the decompression syndrome hypothesis. Comparative Biochemistry and Physiology Part A: Physiology, 100(3), 529–535.

Rothschild, B., & Martin, L. D. (1987). Avascular necrosis: occurrence in diving Cretaceous mosasaurs. Science, 236(4797), 75–77.

Rothschild, B. M., & Martin, L. D. (2005). Mosasaur ascending: the phytogeny of bends.Netherlands Journal of Geosciences, 84(3), 341–344.

Russell, D. A. (1967). Systematics and morphology of American mosasaurs. Peabody Museum of Natural History, Yale University, Bulletin 23, 240 p.

Sato, K., Naito, Y., Kato, A., Niizuma, Y., Watanuki, Y., Charrassin, J. B., Bost, C. A., Handrich, Y., & Le Maho, Y. (2002). Buoyancy and maximal diving depth in penguins: do they control inhaling air volume?. Journal of Experimental Biology, 205(9), 1189–1197.

Sato, T., & Tanabe, K. (1998). Cretaceous plesiosaurs ate ammonites. Nature, 394, 629–630.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tenevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. and Cardona, A., (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682.

Schlanger, S. O., & Jenkyns, H. C. (1976). Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw, 55(3-4), 179–184.

Schmitz, L. (2009). Quantitative estimates of visual performance features in fossil birds. Journal of Morphology, 270(6), 759–773.

Schmitz, L., & Motani, R. (2010). Morphological differences between the eyeballs of nocturnal and diurnal amniotes revisited from optical perspectives of visual environments. Vision research, 50(10), 936–946.

Schmitz, L., & Motani, R. (2011). Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science, 332(6030), 705–708.

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.

Schumacher, B. A. (2008). On the skull of a pliosaur (Plesiosauria; Pliosauridae) from the Upper Cretaceous (early Turonian) of the North American Western Interior. Transactions of the Kansas Academy of Science, 111(3), 203–218.

Schumacher, B. A. (2011). A ‘woollgari-zone mosasaur’ (Squamata; Mosasauridae) from the Carlile Shale (lower middle Turonian) of central Kansas and the stratigraphic overlap of early mosasaurs and pliosaurid plesiosaurs. Transactions of the Kansas Academy of Science, 114(2), 1–14.

Schumacher, B. A., Carpenter, K., & Everhart, M. J. (2013). A new Cretaceous pliosaur (Plesiosauria, Pliosauridae, Brachauchenius eulerti) from the Carlile Shale (middle Turonian) of Russell County. Kansas: Journal of Vertebrate Paleontology, 33(3), 613–628.

Schulp, A. S., Vonhof, H. B., Van der Lubbe, J. H. J. L., Janssen, R., & Van Baal, R. R. (2013). On diving and diet: resource partitioning in type-Maastrichtian mosasaurs. Netherlands Journal of Geosciences, 92(2-3), 165–170.

Schwenk, K. (1993). Are geckos olfactory specialists?. Journal of Zoology, 229(2),289–302.

Sepkoski, J. J. (1981). A factor analytic description of the Phanerozoic marine fossil record.Paleobiology, 7(1), 36–53.

Sepkoski, J. J. (1984). A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology, 10(2), 246–267.

Sessa, J. A., Larina, E., Knoll, K., Garb, M., Cochran, J. K., Huber, B. T., MacLeod, K. G., & Landman, N. H. (2015). Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms. Proceedings of the National Academy of Sciences, 112(51), 15562–15567.

Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 24(2), 237–252.

Sheets, H. D., Covino, K. M., Panasiewicz, J. M., & Morris, S. R. (2006). Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Frontiers in Zoology, 3(1), 15.

Sheldon, A. (1997). Ecological implications of mosasaur bone microstructure. In Callaway, J. M. & Nicholls, E. L. eds. Ancient Marine Reptiles. Academic Press, New York, pp. 333–354.

Shimada, K. (1997). Paleoecological relationships of the Late Cretaceous lamniform shark,Cretoxyrhina mantelli (Agassiz). Journal of Paleontology, 71(5), 926–933.

Sivak, J. G. (1976). The accommodative significance of the “ramp” retina of the eye of the stingray.Vision Research, 16(9), 945–950.

Sivak, J. G. (1980). Accommodation in vertebrates: a contemporary survey. Current Topics in Eye Research, 3, 281–330.

Sivak, J. G., & Millodot, M. (1977). Optical performance of the penguin eye in air and water. Journal of comparative physiology, 119(3), 241–247.

Sivak, J., Howland, H. C., & McGill-Harelstad, P. (1987). Vision of the Humboldt penguin (Spheniscus humboldti) in air and water. Proceedings of the Royal Society of London. Series B, Biological Sciences, 229(1257), 467–472.

Siverson, M. (1999). A new large lamniform shark from the uppermost Gearle Siltstone (Cenomanian, Late Cretaceous) of Western Australia. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 90(1), 49–66.

Stauber, M., & Müller, R. (2008). Micro-computed tomography: a method for the non-destructive evaluation of the three-dimensional structure of biological specimens. In Westendorf J.J. eds., Osteoporosis. Methods In Molecular Biology™, vol. 455, Humana Press, pp. 273-292.

Stayton, C. T. (2005). Morphological evolution of the lizard skull: a geometric morphometrics survey. Journal of Morphology, 263(1), 47–59.

Suburo, A. M., & Scolaro, J. A. (1990). The eye of the magellanic penguin (Spheniscus magellanicus): structure of the anterior segment. American Journal of Anatomy, 189(3), 245– 252.

Takahashi, A., Dunn, M. J., Trathan, P. N., Croxall, J. P., Wilson, R. P., Sato, K., & Naito, Y. (2004). Krill-feeding behaviour in a chinstrap penguin compared to fish-eating in Magellanic penguins: a pilot study. Marine Ornithology, 32, 47–54.

Talbot, M. J., & White, R. G. (2013). Methanol fixation of plant tissue for scanning electron microscopy improves preservation of tissue morphology and dimensions. Plant Methods, 9(1), 36.

Tanabe, K., Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan. Palaeontology, 22(3), 609–630.

Tanaka, G., Zhou, B., Zhang, Y., Siveter, D. J., & Parker, A. R. (2017). Rods and cones in an enantiornithine bird eye from the Early Cretaceous Jehol Biota. Heliyon, 3(12), e00479.

Tarlo, L. B. H. (1959). Stretosaurus gen nov., a giant pliosaur from the Kimmeridge Clay.Palaeontology, 2 (2), 39–55.

Thewissen, J. G., & Nummela, S. (2008). Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates. University of California Press, Berkeley, 351 p.

Thomas, R. J., Kelly, D. J., & Goodship, N. M. (2004). Eye design in birds and visual constraints on behavior. Ornitol Neotrop, 15(supp.1), 243–250.

Tsai, H. P., & Holliday, C. M. (2015). Articular soft tissue anatomy of the archosaur hip joint: structural homology and functional implications. Journal of Morphology, 276(6), 601–630.

Tsujita C. J. (1995). Origin of concretion-hosted shell clusters in the Late Cretaceous Bearpaw Formation, southern Alberta, Canada. Palaios, 10(5), 408–423.

Tsujita, C. J., & Westermann, G. E. (1998). Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 144(1-2), 135–160.

Underwood, G. (1970). The eye. In Gans, C., Parsons, T. S., eds. Biology of the reptilia. Academic Press, New York, pp. 1–97.

Van Bocxlaer, B., & Schultheiß, R. (2010). Comparison of morphometric techniques for shapes with few homologous landmarks based on machine-learning approaches to biological discrimination. Paleobiology, 36(3), 497–515.

Vazquez, L., Saulacic, N., Belser, U., & Bernard, J. P. (2008). Efficacy of panoramic radiographs in the preoperative planning of posterior mandibular implants: a prospective clinical study of 1527 consecutively treated patients. Clinical Oral Implants Research, 19(1), 81–85.

Vermeij, G. J. (1977). The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology, 3(3), 245–258.

Vickerton, P., Jarvis, J., & Jeffery, N. (2013). Concentration-dependent specimen shrinkage in iodine-enhanced micro CT. Journal of Anatomy, 223(2), 185–193.

Vikaryous, M. V. (2006). Skeletal elements in the vertebrate eye and adnexa—morphological and developmental perspectives. Review for a Special Issue on Craniofacial Development Developmental Dynamics, 235, 1244–1255.

VonLoh, J. P., & Bell, G. L. Jr. (1998). Fossil reptiles from the Late Cretaceous Greenhorn Formation (late Cenomanian–middle Turonian) of the Black Hills region, South Dakota. Dakoterra 5:29–38.

Walls, G. L., (1942). The Vertebrate Eye and Its Adaptive Radiation. Cranbrook Institute of Science, Oxford, 785 p.

Warrant, E. J., & Locket, N. A. (2004). Vision in the deep sea. Biological Reviews, 79(3), 671–712.

Werner, Y. L., & Seifan, T. (2006). Eye size in geckos: asymmetry, allometry, sexual dimorphism, and behavioral correlates. Journal of Morphology, 267(12), 1486–1500.

Wiens, J. J., Kuczynski, C. A., Townsend, T., Reeder, T. W., Mulcahy, D. G., & Sites Jr, J. W. (2010). Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology, 59(6), 674–688.

Wiens, J. J., Hutter, C. R., Mulcahy, D. G., Noonan, B. P., Townsend, T. M., Sites Jr, J. W., & Reeder, T. W. (2012). Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8(6), 1043–1046.

Williston, S. W. (1914). Water Reptiles of the Past andPresent. University of Chicago Press, Chicago, 251 p.

Wilson, P. A., Norris, R. D., & Cooper, M. J. (2002). Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise.Geology, 30(7), 607–610.

Wong, M. D., Spring, S., & Henkelman, R. M. (2013). Structural stabilization of tissue for embryo phenotyping using micro-CT with iodine staining. PLOS ONE, 8(12), e84321.

Wright, E. K. (1987). Stratification and paleocirculation of the late Cretaceous western interior seaway of North America. Geological Society of America Bulletin, 99(4), 480–490.

Zheng, Y., & Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94, 537–547.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る