リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Alternative approaches of evaluating Diffraction Transfer Matrix and Radiation Characteristics using the hybrid source-dipole formulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Alternative approaches of evaluating Diffraction Transfer Matrix and Radiation Characteristics using the hybrid source-dipole formulation

Liu, Yingyi 劉, 盈溢 リュウ, インイ Liang, Hui Kashiwagi, Masashi 柏木, 正 カシワギ, マサシ Cong, Peiwen 九州大学

2021.09

概要

The interaction theory presented by Kagemoto and Yue (1986) significantly reduces the computational burden in the wave interaction problem of multiple surface-piercing bodies, particularly arrays of w

この論文で使われている画像

参考文献

Eatock Taylor, R., Chau, F.P., 1992. Wave diffraction theory-some developments in

linear and nonlinear theory. J. Offshore Mech. Arct. Eng. 114, 185–194.

Fenton, J.D., 1978. Wave forces on vertical bodies of revolution. J Fluid Mech 85 (2),

241–255.

Flavi`

a, F.F., Babarit, A., Cl´

ement, A.H., 2017. On the numerical modelling and

optimization of a bottom-referenced heave-buoy array of wave energy converters.

Int. J. Mar. Energy 19, 1–15.

Flavi`

a, F.F., McNatt, C., Rong`

ere, F., Babarit, A., Cl´

ement, A.H., 2016. Computation of

the Diffraction Transfer Matrix and the Radiation Characteristics in the open-source

BEM code NEMOH. Proceeding of the 35th International Conference on Offshore

Mechanics and Arctic Engineering, Busan, Korea, Vol. 49972. American Society of

Mechanical Engineers.V006T09A014

Flavi`

a, F.F., McNatt, C., Rong`

ere, F., Babarit, A., Cl´ement, A.H., 2018. A numerical tool

for the frequency domain simulation of large arrays of identical floating bodies in

waves. Ocean Eng. 148, 299–311.

Flavi`

a, F.F., Meylan, M.H., 2019. An extension of general identities for 3d water-wave

diffraction with application to the diffraction transfer matrix. Appl. Ocean Res. 84,

279–290.

Goo, J.-S., Yoshida, K., 1990. A numerical method for huge semisubmersible responses in

waves. Transactions-Society of Naval Architects and Marine Engineers 98, 365–387.

Abramowitz, M., Stegun, I.A., 1964. Handbook of mathematical functions: With

formulas, graphs, and mathematical tables. National Bureau of Standards.

Babarit, A., Delhommeau, G., 2015. Theoretical and numerical aspects of the open source

BEM solver NEMOH. Proceeding of the 11th European Wave and Tidal Energy

Conference, Nantes, France.

Bennetts, L.G., Squire, V.A., 2009. Wave scattering by multiple rows of circular ice floes.

J Fluid Mech 639, 213–238.

Black, J.L., 1975. Wave forces on vertical axisymmetric bodies. J Fluid Mech 67 (2),

369–376.

Chakrabarti, S.K., 2001. Response due to moored multiple structure interaction. Mar.

struct. 14 (1–2), 231–258.

Chau, F.P., 1989. The second order velocity potential for diffraction of waves by fixed

offshore structures.. University College London.

Child, B.F.M., Venugopal, V., 2010. Optimal configurations of wave energy device

arrays. Ocean Eng. 37 (16), 1402–1417.

Cong, P.-W., Gou, Y., Teng, B., 2012. A new approach to low-frequency QTF and its

application in predicting slow drift force. Ocean Eng. 53, 25–37.

Dai, Y.S., Duan, W.Y., 2008. Potential flow theory of ship motions in waves. National

Defense Industry Publication.

16

Y. Liu et al.

Applied Ocean Research 114 (2021) 102769

McNatt, J.C., Venugopal, V., Forehand, D., 2015. A novel method for deriving the

diffraction transfer matrix and its application to multi-body interactions in water

waves. Ocean Eng. 94, 173–185.

Meylan, M., 2007 (accessed on Oct. 12, 2020). Wikiwaves. https://wikiwaves.org/Graf%

27s_Addition_Theorem.

Ohkusu, M., 1974. Hydrodynamic forces on multiple cylinders in waves. Proceedings of

International Symposium on the Dynamics of Marine Vehicles and Structures in

Waves, London, England. Institute of Mechanical Engineers.

Ohmatsu, S., 1983. A new simple method to eliminate the irregular frequencies in the

theory water wave radiation problems. Technical Report. Papers of Ship Research

Institute.

Penalba, M., Kelly, T., Ringwood, J., 2017. Using NEMOH for modelling wave energy

converters: A comparative study with WAMIT. Proceeding of the 12th European

Wave and Tidal Energy Conference (EWTEC2017), Cork, Ireland.

Peter, M.A., Meylan, M.H., 2004. The eigenfunction expansion of the infinite depth free

surface green function in three dimensions. Wave Motion 40 (1), 1–11.

Peter, M.A., Meylan, M.H., 2004. Infinite-depth interaction theory for arbitrary floating

bodies applied to wave forcing of ice floes. J Fluid Mech 500, 145–167.

Siddorn, P., Taylor, R.E., 2008. Diffraction and independent radiation by an array of

floating cylinders. Ocean Eng. 35 (13), 1289–1303.

Simon, M.J., 1982. Multiple scattering in arrays of axisymmetric wave-energy devices.

part 1. a matrix method using a plane-wave approximation. J Fluid Mech 120, 1–25.

Spring, B.H., Monkmeyer, P.L., 1974. Interaction of Plane Waves with Vertical Cylinders.

Proceeding of the 14th International Conference on Coastal Engineering,

Copenhagen, Denmark, pp. 1828–1847.

Sun, L., Stansby, P., Zang, J., Moreno, E.C., Taylor, P.H., 2016. Linear diffraction analysis

for optimisation of the three-float multi-mode wave energy converter M4 in regular

waves including small arrays. Journal of Ocean Engineering and Marine Energy 2

(4), 429–438.

Teng, B., 2016. A Higher-order Boundary Element Method for Wave-structure

Interactions. In: Teng, B. (Ed.), Analysis theories and applications of wave-structure

interactions (a special proceeding dedicated to Prof. Li, Y. C. on his eighty birthday).

Ocean Press, Beijing, China.

Teng, B., Cong, P.W., 2017. A novel decomposition of the quadratic transfer function

(QTF) for the time-domain simulation of non-linear wave forces on floating bodies.

Appl. Ocean Res. 65, 112–128.

Teng, B., Eatock Taylor, R., 1995. New higher-order boundary element methods for wave

diffraction/radiation. Appl. Ocean Res. 17 (2), 71–77.

Twersky, V., 1952. Multiple scattering of radiation by an arbitrary configuration of

parallel cylinders. J. Acoust. Soc. Am. 24 (1), 42–46.

Watson, G.N., 1995. A treatise on the theory of bessel functions. Cambridge University

Press.

Zheng, S., Zhang, Y., Iglesias, G., 2018. Wave–structure interaction in hybrid wave farms.

J Fluids Struct 83, 386–412.

Zheng, S., Zhang, Y., Iglesias, G., 2020. Power capture performance of hybrid wave farms

combining different wave energy conversion technologies: the H-factor. Energy

117920.

Zhong, Q., Yeung, R.W., 2019. Wave-body interactions among energy absorbers in a

wave farm. Appl Energy 233, 1051–1064.

oteman, M., 2017. Wave energy parks with point-absorbers of different dimensions.

J Fluids Struct 74, 142–157.

oteman, M., Engstr¨

om, J., Eriksson, M., Isberg, J., 2015. Fast modeling of large wave

energy farms using interaction distance cut-off. Energies 8 (12), 13741–13757.

Hulme, A., 1983. A ring-source/integral-equation method for the calculation of

hydrodynamic forces exerted on floating bodies of revolution. J Fluid Mech 128,

387–412.

John, F., 1950. On the motion of floating bodies II. simple harmonic motions. Commun

Pure Appl Math 3 (1), 45–101.

Kagemoto, H., Yue, D.K.P., 1986. Interactions among multiple three-dimensional bodies

in water waves: an exact algebraic method. J Fluid Mech 166, 189–209.

Kashiwagi, M., 2000. Hydrodynamic interactions among a great number of columns

supporting a very large flexible structure. J Fluids Struct 14 (7), 1013–1034.

Kashiwagi, M., 2001. Wave-induced local steady forces on a column-supported very large

floating structure. Proceeding of the 11th International Offshore and Polar

Engineering Conference, Stavanger, Norway. International Society of Offshore and

Polar Engineers.

Kashiwagi, M., 2003. Practical hydrodynamics of floating bodies, volume 1: numerical

computation methods for body-oscillation problems. Japan Society of Naval

Architects.

Kashiwagi, M., 2017. Hydrodynamic interactions of multiple bodies with water waves.

Int. J. Offshore Polar Eng. 27 (02), 113–122.

Kashiwagi, M., Kohjo, T., 1995. A calculation method for hydrodynamic interactions of

multiple bodies supporting a huge floating body (in japanese), 247–254.

Kim, M.H., Yue, D.K.P., 1989. The complete second-order diffraction solution for an

axisymmetric body. part 1. monochromatic incident waves. J Fluid Mech 200,

235–264.

Lau, S.M., Hearn, G.E., 1989. Suppression of irregular frequency effects in fluid–structure

interaction problems using a combined boundary integral equation method. Int J

Numer Methods Fluids 9 (7), 763–782.

Lee, C.H., 1995. WAMIT theory manual. Technical Report. Department of Ocean

Engineering, Massachusetts Institute of Technology.

Lee, C.H., Newman, J.N., 2005. Computation of wave effects using the panel method.

Numerical Models in Fluid Structure Interaction 42, 211–251.

Liang, H., Ouled Housseine, C., Chen, X.B., Shao, Y., 2020. Efficient methods free of

irregular frequencies in wave and solid/porous structure interactions. J Fluids Struct

98, 103130.

Liu, Y., 2019. HAMS: A frequency-domain preprocessor for wave-structure interactions –

theory, development, and application. J Mar Sci Eng 7 (3), 81.

Liu, Y., Yoshida, S., Hu, C., Sueyoshi, M., Sun, L., Gao, L., Cong, P., He, G., 2018.

A reliable open-source package for performance evaluation of floating renewable

energy systems in coastal and offshore regions. Energy Convers. Manage. 174,

516–536.

McIver, P., 1984. Wave forces on arrays of floating bodies. J Eng Math 18 (4), 273–285.

McIver, P., Evans, D.V., 1984. The occurrence of negative added mass in free-surface

problems involving submerged oscillating bodies. J Eng Math 18 (1), 7–22.

McNatt, J.C., Venugopal, V., Forehand, D., 2013. The cylindrical wave field of wave

energy converters. Int. J. Mar. Energy 3, e26–e39.

17

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る