リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Single RET Mutation in Hirschsprung Disease Induces Intestinal Aganglionosis Via a Dominant-Negative Mechanism」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Single RET Mutation in Hirschsprung Disease Induces Intestinal Aganglionosis Via a Dominant-Negative Mechanism

Sunardi, Mukhamad Ito, Keisuke Sato, Yuya Uesaka, Toshihiro Iwasaki, Mitsuhiro Enomoto, Hideki 神戸大学

2023

概要

Background & Aims: Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of the enteric nervous system (ENS). HSCR potentially involves multiple gene aberrations and displays complex patterns of inheritance. Mutations of the RET gene, encoding the RET receptor tyrosine kinase, play a central role in the pathogenesis of HSCR. Although a wide variety of coding RET mutations have been identified, their pathogenetic significance in vivo has remained largely unclear. Methods: We introduced a HSCR-associated RET missense mutation, RET(S811F), into the corresponding region (S812) of the mouse Ret gene. Pathogenetic impact of Ret(S812F) was assessed by histologic and functional analyses of the ENS and by biochemical analyses. Interactions of the Ret(S812F) allele with HSCR susceptibility genes, the RET9 allele and the Ednrb gene, were examined by genetic crossing in mice. Results: RetS812F/+ mice displayed intestinal aganglionosis (incidence, 50%) or hypoganglionosis (50%), impaired differentiation of enteric neurons, defecation deficits, and increased lethality. Biochemical analyses revealed that Ret(S811F) protein was not only kinase-deficient but also abrogated function of wild-type RET in trans. Moreover, the Ret(S812F) allele interacted with other HSCR susceptibility genes and caused intestinal aganglionosis with full penetrance. Conclusions: This study demonstrates that a single RET missense mutation alone induces intestinal aganglionosis via a dominant-negative mechanism. The RetS812F/+ mice model HSCR displays dominant inheritance with incomplete penetrance and serves as a valuable platform for better understanding of the pathogenetic mechanism of HSCR caused by coding RET mutations.

この論文で使われている画像

参考文献

1. Kapur RP, Ambartsumyan L, Smith C. Are we underdiagnosing Hirschsprung disease? Pediatr Devel Pathol

2020;23:60–71.

HSCR Mouse Model With a RET Missense Mutation

2023

2. Airaksinen MS, Saarma M. The GDNF family: signalling,

biological functions and therapeutic value. Nat Rev

Neurosci 2002;3:383–394.

3. Schuchardt A, D’Agati V, Larsson-Blomberg L, et al.

Defects in the kidney and enteric nervous system of mice

lacking the tyrosine kinase receptor Ret. Nature 1994;

367:380–383.

4. Amiel J, Sproat-Emison E, Garcia-Barcelo M, et al.

Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 2008;45:1–14.

5. Romeo G, Ronchetto P, Luo Y, et al. Point mutations

affecting the tyrosine kinase domain of the RET protooncogene in Hirschsprung’s disease. Nature 1994;

367:377–378.

6. Edery P, Lyonnet S, Mulligan LM, et al. Mutations of the

RET proto-oncogene in Hirschsprung’s disease. Nature

1994;367:378–380.

7. Pasini B, Borrello MG, Greco A, et al. Loss of function

effect of RET mutations causing Hirschsprung disease.

Nat Genet 1995;10:35–40.

8. Iwashita T, Kurokawa K, Qiao S, et al. Functional analysis

of RET with Hirschsprung mutations affecting its kinase

domain. Gastroenterology 2001;121:24–33.

9. Amiel J, Lyonnet S. Hirschsprung disease, associated

syndromes, and genetics: a review. J Med Genet 2001;

38:729–739.

10. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 2007;

8:466–479.

11. Nakatani T, Iwasaki M, Yamamichi A, et al. Point mutagenesis in mouse reveals contrasting pathogenetic effects between MEN2B- and Hirschsprung diseaseassociated missense mutations of the RET gene.

Development,

Growth

Differentiation

2020;

62:214–222.

12. Bolk S, Pelet A, Hofstra RM, et al. A human model for

multigenic inheritance: phenotypic expression in

Hirschsprung disease requires both the RET gene and a

new 9q31 locus. Proc Natl Acad Sci U S A 2000;

97:268–273.

13. Seri M, Yin L, Barone V, et al. Frequency of RET mutations in long- and short-segment Hirschsprung disease.

Hum Mutat 1997;9:243–249.

14. Sugimoto K, Miyazawa T, Nishi H, et al. Heterozygous

p.S811F RET gene mutation associated with renal

agenesis, oligomeganephronia and total colonic

aganglionosis: a case report. BMC Nephrol 2016;

17:146.

15. Gould TW, Yonemura S, Oppenheim RW, et al. The

neurotrophic effects of glial cell line-derived neurotrophic

factor on spinal motoneurons are restricted to fusimotor

subtypes. J Neurosci 2008;28:2131–2146.

16. Sunardi M, Ito K, Enomoto H. Live visualization of a

functional RET-EGFP chimeric receptor in homozygous

knock-in mice. Development, Growth & Differentiation

2021;63:285–294.

17. Heanue TA, Pachnis V. Ret isoform function and marker

gene expression in the enteric nervous system is

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

1523

conserved across diverse vertebrate species. Mech Dev

2008;125:687–699.

Jijiwa M, Fukuda T, Kawai K, et al. A targeting mutation

of tyrosine 1062 in Ret causes a marked decrease of

enteric neurons and renal hypoplasia. Mol Cell Biol 2004;

24:8026–8036.

Nishiyama C, Uesaka T, Manabe T, et al. Trans-mesenteric neural crest cells are the principal source of the

colonic enteric nervous system. Nat Neurosci 2012;

15:1211–1218.

Uesaka T, Nagashimada M, Yonemura S, et al. Diminished Ret expression compromises neuronal survival in

the colon and causes intestinal aganglionosis in mice.

J Clin Invest 2008;118:1890–1898.

Carrasquillo MM, McCallion AS, Puffenberger EG, et al.

Genome-wide association study and mouse model

identify interaction between RET and EDNRB pathways

in Hirschsprung disease. Nat Genet 2002;32:237–244.

Badner JA, Sieber WK, Garver KL, et al. A genetic study

of Hirschsprung disease. Am J Hum Genet 1990;

46:568–580.

Pini Prato A, Rossi V, Mosconi M, et al. A prospective

observational study of associated anomalies in Hirschsprung’s disease. Orphanet J Rare Dis 2013;8:184.

Chatterjee S, Chakravarti A. A gene regulatory network

explains RET-EDNRB epistasis in Hirschsprung disease.

Hum Mol Genet 2019;28:3137–3147.

Kapur RP. Early death of neural crest cells is responsible

for total enteric aganglionosis in Sox10(Dom)/

Sox10(Dom) mouse embryos. Pediatr Dev Pathol 1999;

2:559–569.

Shen L, Pichel JG, Mayeli T, et al. Gdnf haploinsufficiency causes Hirschsprung-like intestinal

obstruction and early-onset lethality in mice. Am J Hum

Genet 2002;70:435–447.

Bergeron KF, Cardinal T, Toure AM, et al. Male-biased

aganglionic megacolon in the TashT mouse line due to

perturbation of silencer elements in a large gene desert

of chromosome 10. PLoS Genetics 2015;11:e1005093.

Li HB, Jin XQ, Jin X, et al. BMP4 knockdown of NCSCs

leads to aganglionosis in the middle embryonic stage.

Mol Med Rep 2018;17:5423–5427.

Okamoto M, Uesaka T, Ito K, et al. Increased RET activity

coupled with a reduction in the RET gene dosage causes

intestinal aganglionosis in mice. eNeuro 2021;8.

Enomoto H, Crawford PA, Gorodinsky A, et al. RET

signaling is essential for migration, axonal growth and

axon guidance of developing sympathetic neurons.

Development 2001;128:3963–3974.

de Graaff E, Srinivas S, Kilkenny C, et al. Differential

activities of the RET tyrosine kinase receptor isoforms

during mammalian embryogenesis. Genes Dev 2001;

15:2433–2444.

Carniti C, Belluco S, Riccardi E, et al. The Ret(C620R)

mutation affects renal and enteric development in a

mouse model of Hirschsprung’s disease. Am J Pathol

2006;168:1262–1275.

Asai N, Fukuda T, Wu Z, et al. Targeted mutation of

serine 697 in the Ret tyrosine kinase causes migration

1524

34.

35.

36.

37.

38.

39.

40.

41.

42.

Sunardi et al

Cellular and Molecular Gastroenterology and Hepatology Vol. 15, Iss. 6

defect of enteric neural crest cells. Development 2006;

133:4507–4516.

Jain S, Knoten A, Hoshi M, et al. Organotypic specificity

of key RET adaptor-docking sites in the pathogenesis of

neurocristopathies and renal malformations in mice.

J Clin Invest 2010;120:778–790.

Jain S, Naughton CK, Yang M, et al. Mice expressing a

dominant-negative Ret mutation phenocopy human

Hirschsprung disease and delineate a direct role of

Ret in spermatogenesis. Development 2004;131:

5503–5513.

Soret R, Schneider S, Bernas G, et al. Glial cell-derived

neurotrophic factor induces enteric neurogenesis and

improves colon structure and function in mouse models

of Hirschsprung disease. Gastroenterology 2020;

159:1824–1838 e17.

Cosma MP, Cardone M, Carlomagno F, et al. Mutations

in the extracellular domain cause RET loss of function by

a dominant negative mechanism. Mol Cell Biol 1998;

18:3321–3329.

Amaya E, Musci TJ, Kirschner MW. Expression of a

dominant negative mutant of the FGF receptor disrupts

mesoderm formation in Xenopus embryos. Cell 1991;

66:257–270.

Dumont DJ, Gradwohl G, Fong GH, et al. Dominantnegative and targeted null mutations in the endothelial

receptor tyrosine kinase, tek, reveal a critical role in

vasculogenesis of the embryo. Genes Dev 1994;

8:1897–1909.

Vajkoczy P, Knyazev P, Kunkel A, et al. Dominantnegative inhibition of the Axl receptor tyrosine kinase

suppresses brain tumor cell growth and invasion and

prolongs survival. Proc Natl Acad Sci U S A 2006;

103:5799–5804.

Hashimoto M, Takemoto T. Electroporation enables the

efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci Rep

2015;5:11315.

Enomoto H, Araki T, Jackman A, et al. GFR alpha1deficient mice have deficits in the enteric nervous system and kidneys. Neuron 1998;21:317–324.

43. Enomoto H, Araki T, Jackman A, et al. GFR a1-deficient

mice have deficits in the enteric nervous system and

kidneys. Neuron 1998;21:317–324.

44. Enomoto H, Hughes I, Golden J, et al. GFRalpha1

expression in cells lacking RET is dispensable for

organogenesis and nerve regeneration. Neuron 2004;

44:623–636.

45. Kimball ES, Palmer JM, D’Andrea MR, et al. Acute colitis

induction by oil of mustard results in later development of an

IBS-like accelerated upper GI transit in mice. Am J Physiol

Gastrointest Liver Physiol 2005;288:G1266–G1273.

46. Greene JG, Noorian AR, Srinivasan S. Delayed gastric

emptying and enteric nervous system dysfunction in the

rotenone model of Parkinson’s disease. Exp Neurol

2009;218:154–161.

Received January 12, 2022. Accepted December 5, 2022.

Correspondence

Address correspondence to: Hideki Enomoto, MD, PhD, Division of Neural

Differentiation and Regeneration, Department of Physiology and Cell Biology,

Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuoku, Hyogo 650-0017, Japan. e-mail: enomotoh@med.kobe-u.ac.jp.

Acknowledgments

The authors thank all members of the Enomoto laboratory for their assistance

and discussion. They also thank their collaborators in T-CiRA for fruitful

discussion.

CRediT Authorship Contributions

Mukhamad Sunardi (Conceptualization: Equal; Data curation: Lead; Formal

analysis: Lead; Funding acquisition: Supporting; Investigation: Lead;

Methodology: Lead; Visualization: Lead; Writing – original draft: Lead)

Keisuke Ito (Investigation: Supporting)

Yuya Sato (Investigation: Supporting)

Toshihiro Uesaka (Investigation: Supporting)

Mitsuhiro Iwasaki (Methodology: Supporting)

Hideki Enomoto (Conceptualization: Lead; Data curation: Lead; Formal

analysis: Lead; Funding acquisition: Lead; Methodology: Lead; Project

administration: Lead; Resources: Equal; Supervision: Lead; Validation: Lead;

Writing – review & editing: Lead)

Conflicts of interest

The authors disclose no conflicts.

Funding

Supported by Grant-in-Aid from MEXT, Japan Society for the Promotion of

Science, Japan, Grant 20K21526, Japan Intractable Diseases Research

Foundation, and The Ichiro Kanehara Foundation for the Promotion of

Medical Sciences and Medical Care.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る