リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cell therapy for Parkinson's disease with induced pluripotent stem cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cell therapy for Parkinson's disease with induced pluripotent stem cells

Morizane, Asuka 京都大学 DOI:10.1186/s41232-023-00269-3

2023.02.27

概要

Parkinson’s disease (PD) is the second most common neurodegenerative disease and a prime target of cell therapies. In fact, aborted fetal tissue has been used as donor material for such therapies since the 1980s. These cell therapies, however, suffer from several problems, such as a short supply of donor materials, quality instability of the tissues, and ethical restrictions. The advancement of stem cell technologies has enabled the production of donor cells from pluripotent stem cells with unlimited scale, stable quality, and less ethical problems. Several research groups have established protocols to induce dopamine neural progenitors from pluripotent stem cells in a clinically compatible manner and confirmed efficacy and safety in non-clinical studies. Based on the results from these non-clinical studies, several clinical trials of pluripotent stem cell-based therapies for PD have begun. In the context of immune rejection, there are several modes of stem cell-based therapies: autologous transplantation, allogeneic transplantation without human leukocyte antigen-matching, and allogeneic transplantation with matching. In this mini-review, several practical points of stem cell-based therapies for PD are discussed.

この論文で使われている画像

参考文献

1. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al.

Transplantation of embryonic dopamine neurons for severe Parkinson’s

disease. N Engl J Med. 2001;344(10):710–9.

2. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A

double-blind controlled trial of bilateral fetal nigral transplantation in

Parkinson’s disease. Ann Neurol. 2003;54(3):403–14.

3. Brundin P, Barker RA, Parmar M. Neural grafting in Parkinson’s disease:

problems and possibilities. Prog Brain Res. 2010;184:265–94.

Morizane Inflammation and Regeneration

(2023) 43:16

4. Mendez I, Sanchez-Pernaute R, Cooper O, Viñuela A, Ferrari D, Björklund L,

et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s

disease. Brain. 2005;128(Pt 7):1498–510.

5. Adler AF, Cardoso T, Nolbrant S, Mattsson B, Hoban DB, Jarl U, et al. hESCderived dopaminergic transplants integrate into basal ganglia circuitry

in a preclinical model of Parkinson’s disease. Cell Rep. 2019;28(13):3462–

3473.e5.

6. Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, et al. Human

iPS cell-derived dopaminergic neurons function in a primate Parkinson’s

disease model. Nature. 2017;548(7669):592–6.

7. Doi D, Magotani H, Kikuchi T, Ikeda M, Hiramatsu S, Yoshida K, et al. Preclinical study of induced pluripotent stem cell-derived dopaminergic

progenitor cells for Parkinson’s disease. Nat Commun. 2020;11(1):3369.

8. Kim TW, Piao J, Koo SY, Kriks S, Chung SY, Betel D, et al. Biphasic activation

of WNT signaling facilitates the derivation of midbrain dopamine neurons

from hESCs for translational use. Cell Stem Cell. 2021;28(2):343–355.e5.

9. Piao J, Zabierowski S, Dubose BN, Hill EJ, Navare M, Claros N, et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain

dopamine progenitor product, MSK-DA01. Cell Stem Cell. 2021;28(2):217–

229.e7.

10. Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, et al. Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with

neural transplants. Sci Transl Med. 2010;2(38):38ra46.

11. Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M,

et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 2014;71(1):83–7.

12. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M,

Studer L. Highly efficient neural conversion of human ES and iPS cells by

dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.

13. Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports.

2014;2(3):337–50.

14. Samata B, Doi D, Nishimura K, Kikuchi T, Watanabe A, Sakamoto Y, et al.

Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1. Nat Commun. 2016;7:13097.

15. Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune

privilege. Trends Immunol. 2015;36(10):569–77.

16. Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic

donors. Blood. 2013;122(8):1341–9.

17. Rong Z, Wang M, Hu Z, Stradner M, Zhu S, Kong H, et al. An effective

approach to prevent immune rejection of human ESC-derived allografts.

Cell Stem Cell. 2014;14(1):121–30.

18. Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, et al.

HLA-E-expressing pluripotent stem cells escape allogeneic responses

and lysis by NK cells. Nat Biotechnol. 2017;35(8):765–72.

19. Xu H, Wang B, Ono M, Kagita A, Fujii K, Sasakawa N, et al. Targeted

disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced

immune compatibility. Cell Stem Cell. 2019;24(4):566–578.e7.

20. Takahashi J. iPS cell-based therapy for Parkinson’s disease: a Kyoto trial.

Regenerative Ther. 2020;13:18–22.

21. Schweitzer JS, Song B, Herrington TM, Park TY, Lee N, Ko S, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N

Engl J Med. 2020;382(20):1926–32.

22. Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, et al. Direct

comparison of autologous and allogeneic transplantation of iPSCderived neural cells in the brain of a nonhuman primate. Stem Cell Rep.

2013;1(4):283–92.

23. Morizane A, Kikuchi T, Hayashi T, Mizuma H, Takara S, Doi H, et al. MHC

matching improves engraftment of iPSC-derived neurons in non-human

primates. Nat Commun. 2017;8(1):385.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Page 5 of 5

Ready to submit your research ? Choose BMC and benefit from:

• fast, convenient online submission

• thorough peer review by experienced researchers in your field

• rapid publication on acceptance

• support for research data, including large and complex data types

• gold Open Access which fosters wider collaboration and increased citations

• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る