リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: correlation of global longitudinal strain with invasive diastolic functional indices」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: correlation of global longitudinal strain with invasive diastolic functional indices

Ito Haruno 三重大学

2021.06.29

概要

Background: Left ventricular (LV) diastolic dysfunction is the main cause of heart failure with preserved ejection fraction (HFpEF), and is characterized by LV stiffness and relaxation. Abnormal LV global longitudinal strain (GLS) is frequently observed l in HFpEF, and was shown to be useful in identifying HFpEF patients at high risk for a cardiovascular event. Cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) enables the reproducible and non-invasive assessment of global strain from cine CMR images. However, the association between GLS and invasively measured parameters of diastolic function has not been investigated. We sought to determine the prevalence and severity of GLS impairment in patients with HFpEF by using CMR-FT, and to evaluate the correlation between GLS measured by CMR-FT and that measured by invasive diastolic functional indices.
Methods: Eighteen patients with HFpEF and 18 age- and sex-matched healthy control subjects were studied. All subjects underwent cine, pre- and post-contrast T1 mapping and late gadolinium-enhancement CMR. In the HFpEF patients, invasive pressure–volume loops were obtained to evaluate LV diastolic properties. GLS was quantified from cine CMR, and extracellular volume fraction (ECV) was quantified from pre- and post-contrast T1 mapping as a known imaging biomarker for predicting LV stiffness.
Results: GLS was significantly impaired in patients with HFpEF (− 14.8 ± 3.3 vs.–19.5 ± 2.8%, p < 0.001). Thirty nine percent (7/18) of HFpEF patients showed impaired GLS with a cut-off of − 13.9%. Statistically significant difference was found in ECV between HFpEF patients and controls (32.2 ± 3.8% vs. 29.9 ± 2.6%, p = 0.044). In HFpEF patients, the time constant of active LV relaxation (Tau) was strongly correlated with GLS (r = 0.817, p < 0.001), global circumferential strain (GCS) (r = 0.539, p = 0.021) and global radial strain (GRS) (r = − 0.552, p = 0.017). Multiple linear regression analysis revealed GLS as the only independent predictor of altered Tau (beta = 0.817, p < 0.001) among age, LV end-diastolic volume index, LV end-systolic volume index, LV mass index, GCS, GRS and GLS.
Conclusions: CMR-FT is a noninvasive approach that enables identification of the subgroup of HFpEF patients with impaired GLS. CMR LV GLS independently predicts abnormal invasive LV relaxation index Tau measurements in HFpEF patients. These findings suggest that feature-tracking CMR analysis in conjunction with ECV, may enable evaluation of diastolic dysfunction in patients with HFpEF.

関連論文

参考文献

1.

2.

3.

4.

5.

6.

Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP,

et al. Get with the guidelines scientific advisory committee and

investigators. Trends in patients hospitalized with heart failure and

preserved left ventricular ejection fraction: prevalence, therapies, and

outcomes. Circulation. 2012;126:65–75.

Redfield MM. Heart failure with preserved ejection fraction. N Engl J Med.

2016;375:1868–77.

Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure--abnormalities in active

relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:

1953–9.

Westermann D, Kasner M, Steendijk P, Spillmann F, Riad A, Weitmann K,

et al. Role of left ventricular stiffness in heart failure with normal ejection

fraction. Circulation. 2008;117:2051–60.

Rommel KP, von Roeder M, Latuscynski K, Oberueck C, Blazek S, Fengler K,

et al. Extracellular volume fraction for characterization of patients with heart

failure and preserved ejection fraction. J Am Coll Cardiol. 2016;67:1815–25.

Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, et al.

Impaired systolic function by strain imaging in heart failure with preserved

ejection fraction. J Am Coll Cardiol. 2014;63:447–56.

Ito et al. Journal of Cardiovascular Magnetic Resonance

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

(2020) 22:42

Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, et al. Prognostic

importance of impaired systolic function in heart failure with preserved

ejection fraction and the impact of spironolactone. Circulation. 2015;132:

402–14.

Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular

magnetic resonance feature tracking and echocardiographic speckle

tracking for informed clinical use. J Cardiovasc Magn Reson. 2016;18:51.

Okuda S, Yano M. Guidelines for treatment of chronic heart failure (JCS

2010). Nihon Rinsho. 2011;69:595–604.

Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al.

2016 ESC guidelines for the diagnosis and treatment of acute and chronic

heart failure. Rev Esp Cardiol (Engl Ed). 2016;69:1167.

Moriwaki K, Takeuchi T, Fujimoto N, Sawai T, Sato Y, Kumagai N, et al. Effect of

Sitagliptin on coronary flow reserve assessed by magnetic resonance imaging in

type 2 diabetic patients with coronary artery disease. Circ J. 2018;82:2119–27.

Nakamori S, Dohi K, Ishida M, Goto Y, Imanaka-Yoshida K, Omori T, et al.

Native T1 mapping and extracellular volume mapping for the assessment of

diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc

Imaging. 2018;11:48–59.

Kawaji K, Codella NC, Prince MR, Chu CW, Shakoor A, LaBounty TM, et al.

Automated segmentation of routine clinical cardiac magnetic resonance

imaging for assessment of left ventricular diastolic dysfunction. Circ

Cardiovasc Imaging. 2009;2:476–84.

Su MY, Lin LY, Tseng YH, Chang CC, Wu CK, Lin JL, et al. CMR-verified

diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF.

JACC Cardiovasc Imaging. 2014;7:991–7.

Wei J, Mehta PK, Shufelt C, Yang Y, Gill E, Kahlon R, et al. Diastolic

dysfunction measured by cardiac magnetic resonance imaging in women

with signs and symptoms of ischemia but no obstructive coronary artery

disease. Int J Cardiol. 2016;220:775–80.

Zemrak F, Ambale-Venkatesh B, Captur G, Chrispin J, Chamera E, Habibi M,

et al. Left atrial structure in relationship to age, sex, ethnicity, and

cardiovascular risk factors: MESA (multi-ethnic study of atherosclerosis). Circ

Cardiovasc Imaging. 2017;10.

Tsao CW, Josephson ME, Hauser TH, Halloran TDO’, Agarwal A, Manning WJ,

et al. Accuracy of electrocardiographic criteria for atrial enlargement:

validation with cardiovascular magnetic resonance. J Cardiovasc Magn

Reson. 2008;10:7.

Goto Y, Ishida M, Takase S, Sigfridsson A, Uno M, Nagata M, et al.

Comparison of displacement encoding with stimulated echoes to magnetic

resonance feature tracking for the assessment of myocardial strain in

patients with acute myocardial infarction. Am J Cardiol. 2017;119:1542–7.

Park J-H, Negishi K, Kwon DH, Popovic ZB, Grimm RA, Marwick TH.

Validation of global longitudinal strain and strain rate as reliable markers of

right ventricular dysfunction: comparison with cardiac magnetic resonance

and outcome. J Cardiovasc Ultrasound. 2014;22:113–20.

von Roeder M, Rommel KP, Kowallick JT, Blazek S, Besler C, Fengler K, et al.

Influence of left atrial function on exercise capacity and left ventricular

function in patients with heart failure and preserved ejection fraction. Circ

Cardiovasc Imaging. 2017;10.

Yamanaka T, Onishi K, Tanabe M, Dohi K, Yamanaka K, Fujimoto N, et al.

Force- and relazation-frequency relations in patients with diastolic heart

failure. Am Heart J. 2006;152:966.e1–7.

Little WC, Cheng CP, Peterson T, Vinten-Johansen J. Response of the left

ventricular end-systolic pressure-volume relation in conscious dogs to a

wide range of contractile states. Circulation. 1988;78:736–45.

Mizuno O, Onishi K, Dohi K, Motoyasu M, Okinaka T, Ito M, et al. Effect of

therapeutic doses of human atrial natriuretic peptide on load and

myocardial performance in patients with congestive heart failure. Am J

Cradiol. 2001;88:863–6.

Raff GL, Glantz SA. Volume loading slows left ventricular isovolumic

relaxation rate. Evidence of load-dependent relaxation in the intact dog

heart. Circ Res. 1981;48:813–24.

Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial

stiffening in patients with heart failure and preserved ejection fraction: implications

for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

Hayashi T, Yamada S, Iwano H, Nakabachi M, Sakakibara M, Okada K, et al.

Left ventricular global strain for estimating relaxation and filling pressure- a

multicenter study. Circ J. 2016;80:1163–70.

Page 11 of 11

27. Eichhorn EJ, Willard JE, Alvarez L, Kim AS, Glamann DB, Risser RC, et al. Are

contraction and relaxation coupled in patients with and without congestive

heart failure? Circulation. 1992;85:2132–9.

28. Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking

Technology for Assessing Cardiac Mechanics: principles, Normal values, and

clinical applications. JACC Cardiovasc Imaging. 2015;8:1444–60.

29. Roy C, Slimani A, de Meester C, Amzulescu M, Pasquet A, Vancraeynest D,

et al. Associations and prognostic significance of diffuse myocardial fibrosis

by cardiovascular magnetic resonance in heart failure with preserved

ejection fraction. J Cardiovasc Magn Reson. 2018;20:55.

30. Mordi IR, Singh S, Rudd A, Srinivasan J, Frenneaux M, Tzemos N, et al.

Comprehensive echocardiographic and cardiac magnetic resonance

evaluation differentiates among heart failure with preserved ejection

fraction patients, hypertensive patients, and healthy control subjects. JACC

Cardiovasc Imaging. 2018;11:577–85.

31. Rosca M, Lancellotti P, Popescu BA, Piérard LA. Left atrial function:

pathophysiology, echocardiographic assessment, and clinical applications.

Heart. 2011;97:1982–9.

32. Santos AB, Roca GQ, Claggett B, Sweitzer NK, Shah SJ, Anand IS, et al.

Prognostic relevance of left atrial dysfunction in heart failure with preserved

ejection fraction. Circ Heart Fail. 2016;9:e002763.

33. Schuster A, Backhaus SJ, Stiermaier T, Navarra JL, Uhlig J, Rommel KP, et al.

Left atrial function with MRI enables prediction of cardiovascular events

after myocardial infarction: insights from the AIDA STEMI and TATORT

NSTEMI trials. Radiology. 2019;293:292–302.

34. Hoit BD. Left atrial size and function: role in prognosis. J Am Coll Cardiol.

2014;63:493–505.

35. Kowallick JT, Kutty S, Edelmann F, Chiribiri A, Villa A, Steinmetz M, et al.

Quantification of left atrial strain and strain rate using cardiovascular

magnetic resonance myocardial feature tracking: a feasibility study. J

Cardiovasc Magn Reson. 2014;16:60.

36. von Roeder M, Kowallick JT, Rommel KP, Blazek S, Besler C, Fengler K, et al.

Right atrial-right ventricular coupling in heart failure with preserved ejection

fraction. Clin Res Cardiol. 2019;109:54-66.

37. Mirsky I. Assessment of diastolic function: suggested methods and future

considerations. Circulation. 1984;69:836–41.

38. Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular

properties via pressure-volume analysis: a guide for clinical, translational,

and basic researchers. Am J Physiol Heart Circ Physiol. 2005;289:H501–12.

39. Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, et al. How to

diagnose heart failure with preserved ejection fraction: the HFA-PEFF

diagnostic algorithm: a consensus recommendation from the heart failure

association (HFA) of the European Society of Cardiology (ESC). Eur Heart J.

2019;40:3297–317.

40. Kleijn SA, Brouwer WP, Aly MF, Rüssel IK, de Roest GJ, Beek AM, et al.

Comparison between three-dimensional speckle-tracking echocardiography

and cardiac magnetic resonance imaging for quantification of left

ventricular volumes and function. Eur Heart J Cardiovasc Imaging. 2012;13:

834–9.

41. Wu L, Germans T, Güçlü A, Heymans MW, Allaart CP, van Rossum AC.

Feature tracking compared with tissue tagging measurements of segmental

strain by cardiovascular magnetic resonance. J Cardiovasc Magn Reson.

2014;16:10.

42. Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur

AC, et al. Myocardial strain imaging: review of general principles, validation,

and sources of discrepancies. Eur Heart J Cardiovasc Imaging. 2019;20:605–19.

43. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen

T, et al. Recommendations for the evaluation of left ventricular diastolic

function by echocardiography: an update from the American Society of

Echocardiography and the European Association of Cardiovascular Imaging.

J Am Soc Echocardiogr. 2016;29:277–314.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published

maps and institutional affiliations.

...

参考文献をもっと見る