リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transposon delivery for CRISPR-based loss-of-function screen in mice identifies NF2 as a cooperating gene involved with the canonical WNT signaling molecular class of hepatocellular carcinoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transposon delivery for CRISPR-based loss-of-function screen in mice identifies NF2 as a cooperating gene involved with the canonical WNT signaling molecular class of hepatocellular carcinoma

Keng, Vincent W. Chiu, Amy P. To, Jeffrey C. Li, Xiao-Xiao Linden, Michael A. Amin, Khalid Moriarity, Branden S. Yusa, Kosuke 京都大学 DOI:10.1016/j.heliyon.2023.e18774

2023.08

概要

Various molecular subclasses of hepatocellular carcinoma (HCC) exists, with many novel cooperating oncogenes and tumor suppressor genes involved in its tumorigenesis. The emerging importance of WNT signaling in HCC has been established. However, the intricate genetic mechanisms involved in this complex signaling pathway remains to be elucidated. Importantly, while some cooperating genes have been identified, there are still many unknown genes associated with catenin beta 1 (CTNNB1)-induced HCC. Mutations in both oncogenes and tumor suppressor genes are required for HCC tumorigenesis. The emergence of the CRISPR/Cas9 system has allowed researchers now to target both alleles efficiently. In this novel study, the Sleeping Beauty transposon system was used as a gene delivery system in vivo to stably integrate an expression cassette that carry pools of gRNAs and overexpress a mutant version of CTNNB1 into the hepatocyte genome. We identified 206 candidate genes that drive HCC tumorigenesis in the context of WNT signaling activation and, neurofibromin 2 (NF2) gene, a known tumor suppressor gene with clinical relevance was validated in this proof-of-principle study.

この論文で使われている画像

参考文献

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Ferlay, et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008, Int. J. Cancer 127 (12) (2010) 2893–2917.

J.M. Llovet, A. Burroughs, J. Bruix, Hepatocellular carcinoma, Lancet 362 (9399) (2003) 1907–1917.

P.A. Farazi, R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment, Nat. Rev. Cancer 6 (9) (2006) 674–687.

W.E. Naugler, et al., Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production, Science 317 (5834) (2007) 121–124.

V.W. Keng, et al., Sex bias occurrence of hepatocellular carcinoma in Poly7 molecular subclass is associated with EGFR, Hepatology 57 (1) (2013) 120–130.

Z. Li, et al., Foxa1 and foxa2 are essential for sexual dimorphism in liver cancer, Cell 148 (1–2) (2012) 72–83.

D.Y. Chiang, et al., Focal gains of VEGFA and molecular classification of hepatocellular carcinoma, Cancer Res. 68 (16) (2008) 6779–6788.

Y. Hoshida, et al., Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma, Cancer Res. 69 (18) (2009)

7385–7392.

S.P. Hussain, et al., TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer, Oncogene 26 (15) (2007)

2166–2176.

Y. Horie, et al., Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas, J. Clin. Invest. 113 (12) (2004) 1774–1783.

A.J. Dupuy, et al., A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice, Cancer Res. 69 (20) (2009)

8150–8156.

V.W. Keng, et al., A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma, Nat. Biotechnol. 27

(3) (2009) 264–274.

K.A. O’Donnell, et al., A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer, Proc. Natl. Acad. Sci. U. S. A. 109

(21) (2012) E1377–E1386.

J.D. Riordan, et al., Identification of rtl1, a retrotransposon-derived imprinted gene, as a novel driver of hepatocarcinogenesis, PLoS Genet. 9 (4) (2013),

e1003441.

E.A. Bard-Chapeau, et al., Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model, Nat. Genet. 46 (1)

(2014) 24–32.

J.D. Riordan, et al., Chronic liver injury alters driver mutation profiles in hepatocellular carcinoma in mice, Hepatology 67 (3) (2018) 924–939.

B.R. Tschida, et al., Sleeping beauty insertional mutagenesis in mice identifies drivers of steatosis-associated hepatic tumors, Cancer Res. 77 (23) (2017)

6576–6588.

H. Koike-Yusa, et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library, Nat. Biotechnol. 32 (3) (2014)

267–273.

H. Wang, et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering, Cell 153 (4) (2013) 910–918.

P. Mali, et al., RNA-guided human genome engineering via Cas9, Science 339 (6121) (2013) 823–826.

L. Cong, et al., Multiplex genome engineering using CRISPR/Cas systems, Science 339 (6121) (2013) 819–823.

S.W. Cho, et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease, Nat. Biotechnol. 31 (3) (2013) 230–232.

H. Yin, et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype, Nat. Biotechnol. 32 (6) (2014) 551–553.

E.E. Bosco, et al., NF2-deficient cells depend on the Rac1-canonical Wnt signaling pathway to promote the loss of contact inhibition of proliferation, Oncogene

29 (17) (2010) 2540–2549.

L.V. de Assis, J. Locatelli, M.C. Isoldi, The role of key genes and pathways involved in the tumorigenesis of Malignant Mesothelioma, Biochim. Biophys. Acta

1845 (2) (2014) 232–247.

N. Kumari, S. Saxena, U. Agrawal, Exosomal protein interactors as emerging therapeutic targets in urothelial bladder cancer, J. Egypt. Natl. Cancer Inst. 27 (2)

(2015) 51–58.

M. de Oliveira Taveira, et al., Genomic characteristics of trastuzumab-resistant Her2-positive metastatic breast cancer, J. Cancer Res. Clin. Oncol. 143 (7) (2017)

1255–1262.

X. Zhu, et al., Moesin is a glioma progression marker that induces proliferation and Wnt/β-catenin pathway activation via interaction with CD44, Cancer Res. 73

(3) (2013) 1142–1155.

K.H. Saba, et al., Loss of NF2 defines a genetic subgroup of non-FOS-rearranged osteoblastoma, J. Pathol. Clin. Res. 6 (4) (2020) 231–237.

J.W. Kunstman, et al., Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing, Hum. Mol. Genet. 24 (8) (2015)

2318–2329.

12

Heliyon 9 (2023) e18774

V.W. Keng et al.

[31] C. Kassab, et al., Genetic and immune profiling for potential therapeutic targets in adult human craniopharyngioma, Clin. Oncol. Res. 2 (3) (2019) 2–8.

[32] M. Quan, et al., Merlin/NF2 suppresses pancreatic tumor growth and metastasis by attenuating the FOXM1-mediated Wnt/β-catenin signaling, Cancer Res. 75

(22) (2015) 4778–4789.

[33] J. Hyun, et al., Dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes hepatobiliary carcinogenesis in non-alcoholic fatty liver disease, J. Hepatol. 75 (3)

(2021) 623–633.

[34] N. Zhang, et al., Molecular alterations of the NF2 gene in hepatocellular carcinoma and intrahepatic cholangiocarcinoma, Oncol. Rep. 38 (6) (2017) 3650–3658.

[35] K. Tzelepis, et al., A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid Leukemia, Cell Rep. 17 (4) (2016)

1193–1205.

[36] M. Grompe, et al., Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic-dysfunction phenotype of lethal albino mice, Gene Dev. 7 (12a)

(1993) 2298–2307.

[37] V.W. Keng, et al., Modeling hepatitis B virus X-induced hepatocellular carcinoma in mice with the Sleeping Beauty transposon system, Hepatology 53 (3) (2011)

781–790.

[38] K.J. Wangensteen, et al., A facile method for somatic, lifelong manipulation of multiple genes in the mouse liver, Hepatology 47 (5) (2008) 1714–1724.

[39] V.W. Keng, et al., A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma, Nat. Biotechnol. 27

(3) (2009) 264–274.

[40] V.W. Keng, et al., Sex bias occurrence of hepatocellular carcinoma in Poly7 molecular subclass is associated with EGFR, Hepatology 57 (1) (2013) 120–130.

[41] Keng V.W., Largaespada D.A., Villanueva A., Why men are at higher risk for hepatocellular carcinoma?, J. Hepatol. 57 (2012) 453-454.

[42] R.F. Clayton, et al., Liver cell lines for the study of hepatocyte functions and immunological response, Liver Int. 25 (2) (2005) 389–402.

[43] F.A. Ran, et al., Genome engineering using the CRISPR-Cas9 system, Nat. Protoc. 8 (11) (2013) 2281–2308.

[44] A. Zimmermann, Steatotic and Steatohepatitic Hepatocellular Carcinomas and Related Neoplasms, Springer International Publishing, Cham, 2016, pp. 229–250.

[45] E.M. Brunt, Histopathologic features of hepatocellular carcinoma, Clin. Liver Dis. (Hoboken) 1 (6) (2012) 194–199.

[46] M. Schlageter, et al., Histopathology of hepatocellular carcinoma, World J. Gastroenterol. 20 (43) (2014) 15955–15964.

[47] Q. Su, P. Bannasch, Relevance of hepatic preneoplasia for human hepatocarcinogenesis, Toxicol. Pathol. 31 (1) (2003) 126–133.

[48] N.A. Temiz, et al., RNA sequencing of Sleeping Beauty transposon-induced tumors detects transposon-RNA fusions in forward genetic cancer screens, Genome

Res. 26 (1) (2016) 119–129.

[49] T. Kodama, et al., Molecular profiling of nonalcoholic fatty liver disease-associated hepatocellular carcinoma using SB transposon mutagenesis, Proc. Natl. Acad.

Sci. U. S. A. 115 (44) (2018), E10417-E10426.

[50] L. Stahn, et al., Sleeping Beauty transposon system for GDNF overexpression of entrapped stem cells in fibrin hydrogel in a rat model of Parkinson’s disease,

Drug Deliv. Transl. Res. 13 (6) (2023) 1745–1765.

[51] J. Rasinska, et al., Transposon-mediated glial cell line-derived neurotrophic factor overexpression in human adipose tissue-derived mesenchymal stromal cells: a

potential approach for neuroregenerative medicine? J. Tissue Eng. Regen. Med. 16 (6) (2022) 515–529.

[52] V. Valero 3rd, T.M. Pawlik, R.A. Anders, Emerging role of Hpo signaling and YAP in hepatocellular carcinoma, J. Hepatocell. Carcinoma 2 (2015) 69–78.

[53] T. Wang, et al., Epigenetic restriction of Hippo signaling by MORC2 underlies stemness of hepatocellular carcinoma cells, Cell Death Differ. 25 (12) (2018)

2086–2100.

[54] Z.L. Luo, et al., A splicing variant of Merlin promotes metastasis in hepatocellular carcinoma, Nat. Commun. 6 (2015) 8457.

[55] S. Kim, E.H. Jho, Merlin, a regulator of Hippo signaling, regulates Wnt/β-catenin signaling, BMB Rep. 49 (7) (2016) 357–358.

[56] J. Deng, et al., The CREB-binding protein inhibitor ICG-001: a promising therapeutic strategy in sporadic meningioma with NF2 mutations, Neurooncol. Adv. 2

(1) (2020) vdz055.

[57] K.A. Morrow, et al., Loss of tumor suppressor Merlin results in aberrant activation of Wnt/β-catenin signaling in cancer, Oncotarget 7 (14) (2016) 17991–18005.

[58] X.H. Wang, et al., Wnt/beta-catenin signaling regulates MAPK and Akt1 expression and growth of hepatocellular carcinoma cells, Neoplasma 58 (3) (2011)

239–244.

[59] L. Zhou, et al., The scaffold protein KSR1, a novel therapeutic target for the treatment of Merlin-deficient tumors, Oncogene 35 (26) (2016) 3443–3453.

[60] M.J.A. Schoonderwoerd, M.-J.T.H. Goumans, L.J.A.C. Hawinkels, Endoglin: beyond the endothelium, Biomolecules 10 (2) (2020) 289.

[61] K.-S. Jeng, et al., The role of endoglin in hepatocellular carcinoma, Int. J. Mol. Sci. 22 (6) (2021) 3208.

[62] D. Yu, et al., Particular distribution and expression pattern of endoglin (CD105) in the liver of patients with hepatocellular carcinoma, BMC Cancer 7 (1) (2007)

122.

[63] E. Yagmur, et al., Elevation of endoglin (CD105) concentrations in serum of patients with liver cirrhosis and carcinoma, Eur. J. Gastroenterol. Hepatol. 19 (9)

(2007) 755–761.

[64] S. Teama, et al., Increased serum endoglin and transforming growth factor β1 mRNA expression and risk of hepatocellular carcinoma in cirrhotic Egyptian

patients, Asian Pac. J. Cancer Prev. APJCP 17 (5) (2016) 2429–2434.

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る