リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「JNK and Yorkie drive tumor malignancy by inducing L-amino acid transporter 1 in Drosophila」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

JNK and Yorkie drive tumor malignancy by inducing L-amino acid transporter 1 in Drosophila

Cong, Bojie Nakamura, Mai Sando, Yukari Kondo, Takefumi Ohsawa, Shizue Igaki, Tatsushi 京都大学 DOI:10.1371/journal.pgen.1009893

2021.11

概要

Identifying a common oncogenesis pathway among tumors with different oncogenic muta-tions is critical for developing anti-cancer strategies. Here, we performed transcriptome analyses on two different models of Drosophila malignant tumors caused by Ras activation with cell polarity defects (RasV12/scrib-/-) or by microRNA bantam overexpression with endo- cytic defects (bantam/rab5-/-), followed by an RNAi screen for genes commonly essential for tumor growth and malignancy. We identified that Juvenile hormone Inducible-21 (JhI-21), a Drosophila homolog of the L-amino acid transporter 1 (LAT1), is upregulated in these malig- nant tumors with different oncogenic mutations and knocking down of JhI-21 strongly blocked their growth and invasion. JhI-21 expression was induced by simultaneous activa- tion of c-Jun N-terminal kinase (JNK) and Yorkie (Yki) in these tumors and thereby contrib- uted to tumor growth and progression by activating the mTOR-S6 pathway.

Pharmacological inhibition of LAT1 activity in Drosophila larvae significantly suppressed growth of RasV12/scrib-/- tumors. Intriguingly, LAT1 inhibitory drugs did not suppress growth of bantam/rab5-/- tumors and overexpression of bantam rendered RasV12/scrib-/- tumors unresponsive to LAT1 inhibitors. Further analyses with RNA sequencing of bantam- expressing clones followed by an RNAi screen suggested that bantam induces drug resis- tance against LAT1 inhibitors via downregulation of the TMEM135-like gene CG31157. Our observations unveil an evolutionarily conserved role of LAT1 induction in driving Drosophila tumor malignancy and provide a powerful genetic model for studying cancer progression and drug resistance.

この論文で使われている画像

参考文献

1. Kanai Y, Segawa H, Miyamoto KI, Uchino H, Takeda E, Endou H. Expression cloning and characteriza- tion of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998; 273: 23629–23632. https://doi.org/10.1074/jbc.273.37.23629 PMID: 9726963

2. Salisbury TB, Arthur S. The regulation and function of the L-type amino acid transporter 1 (LAT1) in can- cer. Int J Mol Sci. 2018; 19: 1–10. https://doi.org/10.3390/ijms19082373 PMID: 30103560

3. Wang Q, Holst J. L-type amino acid transport and cancer: Targeting the mTORC1 pathway to inhibit neoplasia. Am J Cancer Res. 2015; 5: 1281–1294. PMID: 26101697

4. Yue M, Jiang J, Gao P, Liu H, Qing G. Oncogenic MYC Activates a Feedforward Regulatory Loop Pro- moting Essential Amino Acid Metabolism and Tumorigenesis. Cell Rep. 2017; 21: 3819–3832. https:// doi.org/10.1016/j.celrep.2017.12.002 PMID: 29281830

5. Tomblin JK, Arthur S, Primerano DA, Chaudhry AR, Fan J, Denvir J, et. al. Aryl hydrocarbon receptor (AHR) regulation of L-Type Amino Acid Transporter 1 (LAT-1) expression in MCF-7 and MDA-MB-231 breast cancer cells. Biochem Pharmacol. 2016; 106: 94–103. https://doi.org/10.1016/j.bcp.2016.02.020 PMID: 26944194

6. Ha¨ fliger P, Charles RP. The l-type amino acid transporter LAT1—an emerging target in cancer. Int J Mol Sci. 2019; 20: 1–14. https://doi.org/10.3390/ijms20102428 PMID: 31100853

7. Pagliarini RA, Xu T. A Genetic Screen in Drosophila for Metastatic Behavior. Science (80-). 2003; 302: 1227–1231. https://doi.org/10.1126/science.1088474 PMID: 14551319

8. Brumby AM, Richardson HE. scribble mutants cooperate with oncogenic Ras or Notch to cause neo- plastic overgrowth in Drosophila. EMBO J. 2003; 22: 5769–5779. https://doi.org/10.1093/emboj/cdg548 PMID: 14592975

9. Hirabayashi S, Baranski TJ, Cagan RL. XTransformed drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell. 2013; 154: 664–675. https://doi.org/10.1016/j.cell.2013.06. 030 PMID: 23911328

10. Hariharan IK, Bilder D. Regulation of Imaginal Disc Growth by Tumor-Suppressor Genes in Drosophila. Annu Rev Genet. 2006; 40: 335–361. https://doi.org/10.1146/annurev.genet.39.073003.100738 PMID: 16872256

11. Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001; 2: 107–117. https://doi.org/10.1038/35052055 PMID: 11252952

12. Uhlirova M, Bohmann D. JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J. 2006; 25: 5294–5304. https://doi.org/10.1038/sj.emboj. 7601401 PMID: 17082773

13. Mart´ın-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, et al. puckered encodes a phos- phatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 1998; 12: 557–670. https://doi.org/10.1101/gad.12.4.557 PMID: 9472024

14. Wang YH, Huang ML. Organogenesis and tumorigenesis: Insight from the JAK/STAT pathway in the Drosophila eye. Dev Dyn. 2010; 239: 2522–2533. https://doi.org/10.1002/dvdy.22394 PMID: 20737505

15. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010; 19: 491–505. https:// doi.org/10.1016/j.devcel.2010.09.011 PMID: 20951342

16. Igaki T, Pagliarini RA, Xu T. Loss of Cell Polarity Drives Tumor Growth and Invasion through JNK Acti- vation in Drosophila. Curr Biol. 2006; 16: 1139–1146. https://doi.org/10.1016/j.cub.2006.04.042 PMID: 16753569

17. Amoyel M, Anderson AM, Bach EA. JAK/STAT pathway dysregulation in tumors: A Drosophila perspec- tive. Semin Cell Dev Biol. 2014; 28: 96–103. https://doi.org/10.1016/j.semcdb.2014.03.023 PMID: 24685611

18. Doggett K, Grusche FA, Richardson HE, Brumby AM. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol. 2011;11. https://doi.org/10.1186/1471-213X-11-11 PMID: 21352525

19. Reynolds B, Rovers P, Laynes R, Kazi S, Boyd CAR, Goberdhan DCI. Drosophila expresses a CD98 transporter with an evolutionarily conserved structure and amino acid-transport properties. Biochem J. 2009; 420: 363–372. https://doi.org/10.1042/BJ20082198 PMID: 19335336

20. Igaki T, Kanda H, Yamamoto-Goto Y, Kanuka H, Kuranaga E, Aigaki T, et al. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J. 2002; 21: 3009–3018. https://doi.org/10. 1093/emboj/cdf306 PMID: 12065414

21. Eduardo Moreno MY, Konrad B. Evolution of TNF Signaling Mechanisms: JNK-Dependent Apoptosis Triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr Biol. 2002; 12: 1263–1268. https://doi.org/10.1016/s0960-9822(02)00954-5 PMID: 12176339

22. Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell. 2005; 122: 421–434. https://doi.org/10.1016/j.cell.2005.06.007 PMID: 16096061

23. Ziegler AB, Manière G, Grosjean Y. JhI-21 plays a role in Drosophila insulin-like peptide release from larval IPCs via leucine transport. Sci Rep. 2018; 8: 1–11. https://doi.org/10.1038/s41598-017-17765-5 PMID: 29311619

24. Laplante M, Sabatini DM. MTOR signaling in growth control and disease. Cell. 2012; 149: 274–293. https://doi.org/10.1016/j.cell.2012.03.017 PMID: 22500797

25. Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 2012; 441: 1–21. https://doi.org/10.1042/BJ20110892 PMID: 22168436

26. Heesom KJ, Denton RM. Dissociation of the eukaryotic initiation factor-4E/4E-BP1 complex involves phosphorylation of 4E-BP1 by an mTOR-associated kinase. FEBS Lett. 1999; 457: 489–493. https:// doi.org/10.1016/s0014-5793(99)01094-7 PMID: 10471835

27. Manière G, Ziegler AB, Geillon F, Featherstone DE, Grosjean Y. Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells. Cell Rep. 2016; 17: 137–148. https://doi. org/10.1016/j.celrep.2016.08.093 PMID: 27681427

28. Lee WH, Higuchi H, Ikeda S, Macke EL, Takimoto T, Pattnaik BR, et al. Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. Elife. 2016; 5: 1–29. https://doi.org/10.7554/eLife.19264 PMID: 27863209

29. Muto Y, Furihata T, Kaneko M, Higuchi K, Okunushi K, Morio H, et al. Different response profiles of gas- trointestinal cancer cells to an L-type amino acid transporter inhibitor, JPH203. Anticancer Res. 2019; 39: 159–165. https://doi.org/10.21873/anticanres.13092 PMID: 30591453

30. Bode AM, Dong Z. The functional contrariety of JNK. Mol Carcinog. 2007; 46: 591–598. https://doi.org/ 10.1002/mc.20348 PMID: 17538955

31. Bubici C, Papa S. JNK signalling in cancer: In need of new, smarter therapeutic targets. Br J Pharmacol. 2014; 171: 24–37. https://doi.org/10.1111/bph.12432 PMID: 24117156

32. Wu Q, Wu W, Fu B, Shi L, Wang X, Kuca K. JNK signaling in cancer cell survival. Med Res Rev. 2019; 39: 2082–2104. https://doi.org/10.1002/med.21574 PMID: 30912203

33. Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993; 117: 1223–1237. PMID: 8404527

34. Lee T, Luo L. Mosaic analysis with a repressible neurotechnique cell marker for studies of gene function in neuronal morphogenesis. Neuron. 1999; 22: 451–461. https://doi.org/10.1016/s0896-6273(00) 80701-1 PMID: 10197526

35. Bilder D, Li M, Perrimon N. Cooperative regulation of cell polarity and growth by Drosophila tumor sup- pressors. Science (80-). 2000; 289: 113–116. https://doi.org/10.1126/science.289.5476.113 PMID: 10884224

36. Kim W, Jang YG, Yang J, Chung J. Spatial Activation of TORC1 Is Regulated by Hedgehog and E2F1 Signaling in the Drosophila Eye. Dev Cell. 2017; 42: 363–375.e4. https://doi.org/10.1016/j.devcel.2017. 07.020 PMID: 28829944

37. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA- seq aligner. Bioinformatics. 2013; 29: 15–21. https://doi.org/10.1093/bioinformatics/bts635 PMID: 23104886

38. Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31: 166–169. https://doi.org/10.1093/bioinformatics/btu638 PMID: 25260700

39. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009; 26: 139–140. https://doi.org/10.1093/ bioinformatics/btp616 PMID: 19910308

40. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40: 4288–4297. https://doi.org/10.1093/ nar/gks042 PMID: 22287627

参考文献をもっと見る