リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Total hip arthroplasty using a three-dimensional porous titanium acetabular cup: an examination of micromotion using subject-specific finite element analysis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Total hip arthroplasty using a three-dimensional porous titanium acetabular cup: an examination of micromotion using subject-specific finite element analysis

宮川, 貴樹 岐阜大学

2021.06.16

概要

Background: We investigated the mid-term clinical and radiological results of total hip arthroplasty (THA) using a three-dimensional (3D) porous titanium cup and analyzed the micromotion at the interface of the cup using subject-specific finite element (FE) analysis.

Methods: We evaluated 73 hips of 65 patients (6 men and 59 women; mean age at the time of surgery, 62.2 years; range, 45–86 years) who had undergone THA using a 3D porous titanium cup. Clinical evaluations were performed using the Japanese Orthopaedic Association (JOA) hip score system. We assessed the fixation of the acetabular component based on the presence of radiolucent lines and cup migration using anteroposterior radiographs. Subject-specific FE models were constructed from computed tomography data.

Results: The JOA score improved from a preoperative mean of 52.2 (range, 23–82) to a mean of 87.8 (range, 71– 100) at the final follow-up. None of the patients underwent revisions during the follow-up period. Radiolucent lines were observed in 26 cases (35.6%) and frequently appeared at DeLee and Charnley Zone 3. Following the FE analysis, the micromotion at DeLee and Charnley Zone 3 was significantly larger than that at Zone 2. Furthermore, micromotion was large in the groups in which radiolucent lines appeared at Zone 3.

Conclusions: The mid-term clinical outcome of THA using a 3D porous titanium cup was excellent. However, radiolucent lines frequently appeared at DeLee and Charnley Zone 3. FE analysis indicated that micromotion was large at the same site, strongly suggesting that it contributes to the emergence of radiolucent lines. The 3D porous titanium cups are useful in THA, and with improvements focused on micromotion, we anticipate better long-term outcomes.

この論文で使われている画像

参考文献

1. Australian Orthopaedic Association National Joint Replacement Registry: Hip, knee & shoulder arthroplasty: 2017 annual report. 2017. https://aoan-jrr. sahmri.com/documents/10180/397736/Hip%2C%20Knee%20%26%20Shoulder%20Arthroplasty. Accessed 29 Nov 2020.

2. Kärrholm J LH, Malchau H, et al. The Swedish Hip Arthroplasty Register: annual report 2016. 2016. https://registercentrum.blob.core.windows.net/ shpr/r/Annual-Report-2016-B1eWEH-mHM.pdf Accessed 29 Nov2020.

3. National Joint Registry for England, Wales NI and I of M. 15th Annual Report. 2018. http://www.njrcentre.org.uk. Accessed 29 Nov 2020.

4. Japanese THA registory, 2018. https://jsra.info/pdf/THA20180331.pdf. Accessed 11 November 2020.

5. Curtis MJ, Jinnah RH, Wilson VD, Hungerford DS. The initial stability of uncemented acetabular components. J Bone Joint Surg (Br). 1992;74:372–6.

6. Saleh KJ, Bear B, Bostrom M, Wright T, Sculco TP. Initial stability of press-fit acetabular components: an in vitro biomechanical study. Am J of orthop (Belle Mead, NJ). 2008;37:519–22.

7. Nakashima Y, Mashima N, Imai H, Mitsugi N, Taki N, Mochida Y, Owan I, Arakaki K, Yamamoto T, Mawatari T, Motomura G, Ohishi M, Doi T, Kanazawa M, Iwamoto Y. Clinical and radiographic evaluation of total hip arthroplasties using porous tantalum modular acetabular components: 5- year follow-up of clinical trial. Mod Rheumatol. 2013;23(1):112–8. https://doi. org/10.3109/s10165-012-0618-9.

8. Meneghini RM, Ford KS, McCollough CH, Hanssen AD, Lewallen DG. Bone remodeling around porous metal cementless acetabular components. J Arthroplast. 2010;25(5):741–7. https://doi.org/10.1016/j.arth.2009.04.025.

9. Macheras GA, Lepetsos P, Leonidou AO, Anastasopoulos PP, Galanakos SP, Poultsides LA. Survivorship of a porous tantalum monoblock acetabular component in primary hip arthroplasty with a mean follow-up of 18 years. J Arthroplast. 2017;32(12):3680–4. https://doi.org/10.1016/j.arth.2017.06.049.

10. Perticarini L, Zanon G, Rossi SM, Benazzo FM. Clinical and radiographic outcomes of a trabecular titanium acetabular component in hip arthroplasty: results at minimum 5 years follow-up. BMC Musculoskelet Disord. 2015;16(1):375. https://doi.org/10.1186/s12891-015-0822-9.

11. De Meo F, Cacciola G, Bellotti V, Bruschetta A, Cavaliere P. Trabecular titanium acetabular cups in hip revision surgery: mid-term clinical and radiological outcomes. Hip Int. 2018;28(Suppl 2):61–5. https://doi.org/10.11 77/1120700018812992.

12. Banerjee S, Issa K, Kapadia BH, Pivec R, Khanuja HS, Mont MA. Highly-porous metal option for primary cementless acetabular fixation. What is the evidence? Hip Int. 2013;23(6):509–21. https://doi.org/10.5301/hipint.5000064.

13. Issack PS. Use of porous tantalum for acetabular reconstruction in revision hip arthroplasty. J Bone Surg Am. 2013;95(21):1981–7. https://doi.org/10.21 06/JBJS.L.01313.

14. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27(35):5892–900. https://doi.org/10.1016/j.biomaterials.2006.08.013.

15. Urban RM, Hall DJ, Della Valle C, Wimmer MA, Jacobs JJ, Galante JO. Successful long-term fixation and progression of osteolysis associated with first-generation cementless acetabular components retrieved post mortem. J Bone Joint Surg Am. 2012;94(20):1877–85. https://doi.org/1 0.2106/JBJS.J.01507.

16. Imai H, Miyawaki J, Kamada T, Maruishi A, Takeba J, Miura H. Radiolucency around highly porous sockets and hydroxyapatite-coated porous sockets in total hip arthroplasty for hip dysplasia. Eur J Orthop Surg Traumatol. 2019; 29(3):611–8. https://doi.org/10.1007/s00590-018-2351-3.

17. Yoshioka S, Nakano S, Kinoshita Y, Nakamura M, Goto T, Hamada D, Sairyo K. Comparison of a highly porous titanium cup (Tritanium) and a conventional hydroxyapatite-coated porous titanium cup: a retrospective analysis of clinical and radiological outcomes in hip arthroplasty among Japanese patients. J Orthop Sci. 2018;23(6):967–72. https://doi.org/10.1016/j.jos.2018. 06.018.

18. Carli AV, Warth LC, de Mesy Bentley KL, Nestor BJ. Short to midterm followup of the tritanium primary acetabular component: a cause for concern. J Arthroplast. 2017;32(2):463–9. https://doi.org/10.1016/j.arth.2016.07.024.

19. Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 1986;1:108–13.

20. Ding M. Age variations in the properties of human tibial trabecular bone and cartilage. Acta Orthop Scand Suppl. 2000;292:1–45.

21. Marin E, Fusi S, Pressacco M, Paussa L, Fedrizzi L. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: trabecular titanium. J Mech Behav Biomed Mater. 2010;3(5):373–81. https://doi.org/10.1016/j. jmbbm.2010.02.001.

22. Berger RA. Mini-incision total hip replacement using an anterolateral approach: technique and results. Orthop Clin North Am. 2004;35(2):143–51. https://doi.org/10.1016/S0030-5898(03)00111-1.

23. Hardinge K. The direct lateral approach to the hip. J Bone Joint Surg (Br). 1982;64:17–9.

24. Kuroda Y, Akiyama H, Nankaku M, So K, Matsuda S. Modified Mostardi approach with ultra-high-molecular-weight polyethylene tape for total hip arthroplasty provides a good rate of union of osteotomized fragments. J Orthop Sci. 2015;20(4):633–41. https://doi.org/10.1007/s00776-015-0721-9.

25. Ogawa H, Ito Y, Itokazu M, Mori N, Terabayashi N, Shimizu K. Cementless total hip arthroplasty using a spongy metal surface hip prosthesis with a collarless, proximally porous-coated stem. J Arthroplast. 2010;25(3):375–80. https://doi.org/10.1016/j.arth.2009.01.012.

26. Hasegawa Y, Iwata H, Mizuno M, Genda E, Sato S, Miura T. The natural course of osteoarthritis of the hip due to subluxation or acetabular dysplasia. Arch Orthop Trauma Surg. 1992;111(4):187–91. https://doi.org/10.1 007/BF00571474.

27. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976;1:20–32.

28. Long WT, Dorr LD, Healy B, Perry J. Functional recovery of noncemented total hip arthroplasty. Clin Orthop Relat Res. 1993;288:73–7.

29. Callaghan JJ, Dysart SH, Savory CG. The uncemented porous-coated anatomic total hip prosthesis. Two-year results of a prospective consecutive series. J Bone Joint Surg Am. 1988;70(3):337–46. https://doi.org/10.2106/ 00004623-198870030-00004.

30. Kaneuji A, Sugimori T, Ichiseki T, Yamada K, Fukui K, Matsumoto T. Minimum ten-year results of a porous acetabular component for Crowe I to III hip dysplasia using an elevated hip center. J Arthroplast. 2009;24(2):187–94. https://doi.org/10.1016/j.arth.2007.08.004.

31. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech. 2007;40(8):1745–53. https://doi.org/10.1016/j. jbiomech.2006.08.003.

32. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31(2):125–33. https://doi.org/10.1016/s0021-9290(97)00123-1.

33. Pauwels. Diseases of the hip of mechanical origin and their treatment by adduction osteotomy. Rev Chir Orthop Reparatrice Appar Mot. 1951;37: 22–30.

34. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74. https://doi.org/10.2307/2 529310.

35. Medlin D, Scrafton J, Shetty R. Metallurgical attachment of a porous tantalum foam to a titanium substrate for orthopedic applications. J ASTM Int. 2005;2:1–10.

36. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg (Br). 1999;81(5):907–14. https://doi.org/10.13 02/0301-620X.81B5.0810907.

37. Small SR, Berend ME, Howard LA, Rogge RD, Buckley CA, Ritter MA. High initial stability in porous titanium acetabular cups: a biomechanical study. J Arthroplast. 2013;28(3):510–6. https://doi.org/10.1016/j.arth.2012.07.035.

38. Kawanabe K, Ise K, Goto K, Akiyama H, Nakamura T, Kaneuji A, et al. A new cementless total hip arthroplasty with bioactive titanium porous-coating by alkaline and heat treatment: average 4.8-year results. J Biomed Mater Res B Appl Biomater. 2009;90:476–81.

39. Mann CJ, McNally S, Taylor E, Shepperd JA. A retrospective clinical and radiographic review of 173 hydroxyapatite-coated screw cups with 5- to 10- year follow-up, showing low revision rates for fixation failure. J Arthroplast. 2002;17(7):851–5. https://doi.org/10.1054/arth.2002.34825.

40. Baker PN, McMurtry IA, Chuter G, Port A, Anderson J. THA with the ABG I prosthesis at 15 years. Excellent survival with minimal osteolysis. Clin Orthop Relat Res. 2010;468(7):1855–61. https://doi.org/10.1007/s11999-009-1066-5.

41. Rogers A, Kulkarni R, Downes EM. The ABG hydroxyapatite-coated hip prosthesis: one hundred consecutive operations with average 6-year followup. J Arthroplast. 2003;18(5):619–25. https://doi.org/10.1016/S0883-5403(03 )00208-0.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る