リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genome Analysis Revives a Forgotten Hybrid Crop Edo-dokoro in the Genus Dioscorea」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genome Analysis Revives a Forgotten Hybrid Crop Edo-dokoro in the Genus Dioscorea

Natsume, Satoshi Sugihara, Yu Kudoh, Aoi Oikawa, Kaori Shimizu, Motoki Ishikawa, Yuko Nishihara, Masahiro Abe, Akira Innan, Hideki Terauchi, Ryohei 京都大学 DOI:10.1093/pcp/pcac109

2022.11

概要

A rhizomatous Dioscorea crop “Edo-dokoro” was described in old records of Japan, but its botanical identify has not been characterized. We found that Edo-dokoro is still produced by four farmers in Tohoku-machi of Aomori Prefecture, Japan. Rhizomes of Edo-dokoro are a delicacy to the local people and are sold in the markets. Morphological characters of Edo-dokoro suggest its hybrid origin between the two species, D. tokoro and D. tenuipes. Genome analysis revealed that Edo-dokoro is likely originated by hybridization of a male D. tokoro to a female D. tenuipes, followed by a backcross with a male plant of D. tokoro. Edo-dokoro is a typical minor crop possibly maintained for more than 300 years but now almost forgotten from the public. We hypothesize that there are many such uncharacterized genetic heritages passed over generations by small scale farmers that await serious scientific investigation for future use and improvement by using modern genomics information.

参考文献

Akahori, A. (1965) Morphological and paperchromatographical differ- ences between D. tokoro and D. tenuipes (in Japanese). Acta Phytotaxon. Geobot. 21: 149–152.

Arnau, G., Abraham, K., Sheela, M., Chair, H., Sartie, A. and Asiedu, R. (2010) Yams. In Root and Tuber Crops: Handbook of Plant Breeding. Edited by Bradshaw, J. pp. 127–148. Vol. 7. Springer, New York, NY.

Arnau, G., Bhattacharjee, R., Mn, S., Chair, H., Malapa, R., Lebot, V., et al. (2017) Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers. PLoS One 12: e0174150.

Bombarely, A., Moser, M., Amrad, A., Bao, M., Bapaume, L., Barry, C.S., et al. (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat. Plants 2: 1–9.

Bousalem, M., Arnau, G., Hochu, I., Arnolin, R., Viader, V., Santoni, S., et al. (2006) Microsatellite segregation analysis and cytogenetic evidence for tetrasomic inheritance in the American yam Dioscorea trifida and a new basic chromosome number in the Dioscoreae. Theor. Appl. Genet. 113: 439–451.

Bousalem, M., Viader, V., Mariac, C., Gomez, R.-M., Hochu, I., Santoni, S., et al. (2010) Evidence of diploidy in the wild Amerindian yam, a putative progenitor of the endangered species Dioscorea trifida (Dioscoreaceae). Genome 53: 371–383.

Bredeson, J.V., Lyons, J.B., Oniyinde, I.O., Okereke, N.R., Kolade, O., Nnabue, I., et al. (2022) Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nat. Commun. 13: 1–16. Chaïr, H., Cornet, D., Deu, M., Baco, M.N., Agbangla, A., Duval, M.F., et al. (2010) Impact of farmer selection on yam genetic diversity. Conserv. Genet. 11: 2255–2265.

Chaïr, H., Sardos, J., Supply, A., Mournet, P., Malapa, R. and Lebot, V. (2016) Plastid phylogenetics of Oceania yams (Dioscorea spp., Dioscoreaceae) reveals natural interspecific hybridization of the greater yam (D. alata). Bot. J. Linn. Soc. 180: 319–333.

Chen, Y., Nie, F., Xie, S.Q., Zheng, Y.F., Dai, Q., Bray, T., et al. (2021) Effi- cient assembly of nanopore reads via highly accurate and intact error correction. Nat. Commun. 12: 1–10.

Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., et al. (2021) Twelve years of SAMtools and BCFtools. Gigascience 10: giab008. Epping, J. and Laibach, N. (2020) An underutilized orphan tuber crop—Chinese yam: a review. Planta 252: 1–19.

Esquinas-Alcázar, J. (2005) Protecting crop genetic diversity for food secu- rity: political, ethical and technical challenges. Nat. Rev. Gen. 6: 946–953. FAO. (1997) The State of the World’s Plant Genetic Resources for Food and Agriculture. FAO, Rome.

FAOSTAT. (2018) Food and Agriculture Organization. http://www. fao.org/statistics (May 10, 2020, date last accessed).

Girma, G., Hyma, K.E., Asiedu, R., Mitchell, S.E., Gedil, M. and Spillane, C. (2014) Next-generation sequencing based genotyping, cytometry and phenotyping for understanding diversity and evolution of Guinea yams. Theor. Appl. Genet. 127: 1783–1794.

Gouy, M., Guindon, S. and Gascuel, O. (2010) SeaView version 4: a multi- platform graphical user interface for sequence alignment and phyloge- netic tree building. Mol. Biol. Evol. 27: 221–224.

Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. and Vinh, L.S. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35: 518–522.

Huson, D.H. and Bryant, D. (2006) Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23: 254–267.

Jarvis, D.I. and Hodgkin, T. (1999) Wild relatives and crop cultivars: detect- ing natural introgression and farmer selection of new genetic combina- tions in agroecosystems. Mol. Ecol. 8: S159–S173.

Kaibara, E. (1704) Saifu (in Japanese). 77–78.

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A. and Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14: 587–589.

Kiyosawa, S. and Kawasaki, T. (1975) Studies on the constituents of the aerial parts of Dioscorea tenuipes FRANCH. et SAVAT. I. Isolation of the constituents and structures of diotigenin 2-acetate and diotigenin 2, 4-diacetate (in Japanese). YAKUGAKU ZASSHI 95: 94–101.

Kundu, R., Casey, J. and Sung, W.K. (2019) HyPo: Super Fast & Accurate Polisher for Long Read Genome Assemblies (Preprint). bioRxiv.

Kurokawa, D. (1686) Youshu-Fushi (in Japanese). https://www.digi- tal.archives.go.jp/file/1216401 (February 2, 2022, date last accessed).

Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint. 10.48550/arXiv.1303.3997.

Li, H. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094–3100.

Lo, C.C. and Chain, P.S.G. (2014) Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinfor. 15: 366.

Makino, T. (1940) Makino Nihon Shokubutsu Zukan [An Illustrated Flora of Nippon, with the Cultivated and Naturalized Plants], p. 719. The Hokuryukan Co. Ltd., Tokyo, Japan.

Makino, T. (2008) Sin Makino Nihon Shokubutsu Zukan [New Makino’s Illustrated Flora of Japan]. In Edited by Ohashi, H., Murata, J. and Iwatsuki, K., p. 882. The Hokuryukan Co. Ltd, Tokyo, Japan.

Martin, F.W. (1974a) Tropical yams and their potential. Part 1. Dioscorea esculenta. In Agriculture Handbook. No. 457. Edited by Agricultural Research Service United States Department of Agriculture in coopera- tion with U.S. Agency for International Development pp. 1–18. United States Department of Agriculture, Washington, DC.

Martin, F.W. (1974b) Tropical yams and their potential. Part 2. Dioscorea bulbifera. In Agriculture Handbook. No. 466. Edited by Agricultural Research Service United States Department of Agriculture in coopera- tion with U.S. Agency for International Development. pp. 1–19. United States Department of Agriculture, Washington, DC.

Martin, F.W. and Degras, L. (1978a) Tropical yams and their potential. Part 5. Dioscorea trifida. In Agriculture Handbook. No. 522. Edited by Science and Education Administration. pp. 1–26. United States Department of Agriculture, Washington, DC.

Martin, F.W. and Degras, L. (1978b) Tropical yams and their potential. Part 6. Minor cultivated Dioscorea species. In Agriculture Handbook. p. 538. United States Department of Agriculture, Washington, DC.

Nagase, A. (2011) Japanese floriculture development in the Edo period (1603–1868). HortResearch 65: 1–5.

Nara National Research Institute for Cultural Properties. (1990) Preliminary Peport of the Wooden Tablets from the Nara Palace Site. volume 22. https://sitereports.nabunken.go.jp/en/15045 (February 2, 2022, date last accessed).

Natsume, S., Yaegashi, H., Sugihara, Y., Abe, A., Shimizu, M., Oikawa, K., et al. (2022) Whole genome sequencing of a wild yam species Dioscorea tokoro reveals a genomic region associated with sex. BioRxiv. 10.1101/2022.06.11.495741.

Nguyen, L.T., Schmidt, H.A., von Haeseler, A. and Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum- likelihood phylogenies. Mol. Biol. Evol. 32: 268–274.

Noda, H., Fuse, S., Yamashita, J., Poopath, M., Pooma, R. and Tamura, M.N. (2022) Phylogenetic analysis of Dioscorea (Dioscoreaceae) from Japan and adjacent regions based on plastid and nuclear DNA sequences, with special reference to the taxonomic status of selected taxa. Bot. J. Linn. Soc. 198: 186–214.

Obidiegwu, J.E. and Akpabio, E.M. (2017) The geography of yam cultivation in southern Nigeria: exploring its social meanings and cultural functions. J. Ethn. Foods 4: 28–35.

Obidiegwu, J.E., Lyons, J.B. and Chilaka, C.A. (2020) The Dioscorea Genus (Yam)—an appraisal of nutritional and therapeutic potentials. Foods 9: 1304.

Ohwi, J. and Kitagawa, M. (1992) Sin Nihon Shokubutsushi Kenkahen Kaiteiban [New Flora of Japan Revised], pp. 443–446. Shibundo Co. Ltd. publishers, Tokyo, Japan.

Okagami, N. and Kawai, M. (1982) Dormancy in Dioscorea: differences of temperature responses in seed germination among six Japanese species. Bot. Mag. Shokubutsu-gaku-zasshi. Tokyo 95: 155–166.

Oyama, M., Tokiwano, T., Kawaii, S., Yoshida, Y., Mizuno, K., Oh, K., et al. (2017) Protodioscin, isolated from the rhizome of Dioscorea tokoro col- lected in Northern Japan is the major antiproliferative compound to HL-60 leukemic cells. Curr. Bioact. Compd. 13: 170–174.

QGIS Development Team. (2022) QGIS Geographic Information Sys- tem. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (January 20, 2022, date last accessed).

Roach, M.J., Schmidt, S.A. and Borneman, A.R. (2018) Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinform. 19: 1–10.

Satake, Y., Ohwi, J., Kitamura, S., Watari, S. and Tominari, T. (1982) Nihon- no Yasei Shokubutsu Souhon I Tanshiyourui [Wild plants in Japan, I. monocots], pp. 56–57. Heibonsha, Tokyo, Japan.

Scarcelli, N., Chaïr, H., Causse, S., Vesta, R., Couvreur, T.L.P. and Vigouroux, Y. (2017) Crop wild relative conservation: wild yams are not that wild. Biol. Conserv. 210: 325–333.

Scarcelli, N., Cubry, P., Akakpo, R., Thuillet, A.C., Obidiegwu, J., Baco, M.N., et al. (2019) Yam genomics supports West Africa as a major cradle of crop domestication. Sci. Adv. 5: eaaw1947.

Scarcelli, N., Tostain, S., Vigouroux, Y., Agbangla, C., Daïnou, O. and Pham, J.L. (2006) Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop. The case of yam in Benin. Mol. Ecol. 15: 2421–2431.

Schmieder, R. and Edwards, R. (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27: 863–864.

Sharif, B.M., Burgarella, C., Cormier, F., Mournet, P., Causse, S., Van, K.N., et al. (2020) Genome-wide genotyping elucidates the geographical diversification and dispersal of the polyploid and clonally propagated yam (Dioscorea alata). Annals Bot. 126: 1029–1038.

Siadjeu, C., Mayland-Quellhorst, E. and Albach, D.C. (2018) Genetic diver- sity and population structure of trifoliate yam (Dioscorea dumetorum Kunth) in Cameroon revealed by genotyping-by-sequencing (GBS). BMC Plant Biol. 18: 1–14.

Sugihara, Y., Darkwa, K., Yaegashi, H., Natsume, S., Shimizu, M., Abe, A., et al. (2020) Genome analyses reveal the hybrid origin of the staple crop white Guinea yam (Dioscorea rotundata). Proc. Natl. Acad. Sci. 117: 31987–31992.

Sugihara, Y., Kudoh, A., Oli, M.T., Takagi, H., Natsume, S., Shimizu, M., et al. (2021) Population genomics of yams: evolution and domestication of Dioscorea species. In Population Genomics. Edited by Om P. Rajora. pp. 1–28. Springer, Cham. 10.1007/13836_2021_94.

Tamiru, M., Natsume, S., Takagi, H., White, B., Yaegashi, H., Shimizu, M., et al. (2017) Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biol. 15: 1–20.

Terauchi, R. (1990) Genetic diversity and population structure of Dioscorea tokoro Makino, a dioecious climber. Plant Species Biol. 5: 243–253.

Terauchi, R., Chikaleke, V.A., Thottappilly, G. and Hahn, S.K. (1992) Ori- gin and phylogeny of Guinea yams as revealed by RFLP analysis of chloroplast DNA and nuclear ribosomal DNA. Theor. Appl. Genet. 83: 743–751.

Terauchi, R. and Kahl, G. (1999) Mapping of the Dioscorea tokoro genome: AFLP markers linked to sex. Genome 42: 752–762.

Terauchi, R., Terachi, T. and Miyashita, N.T. (1997) DNA polymor- phism at the Pgi locus of a wild yam, Dioscorea tokoro. Genetics. 147: 4. 1899–1914.

Terauchi, R., Terachi, T. and Tsunewaki, K. (1989) Physical map of chloroplast DNA of aerial yam, Dioscorea bulbifera L. Theor. Appl. Genet. 78: 1–10.

Terauchi, R., Terachi, T. and Tsunewaki, K. (1991) Intraspecific variation of chloroplast DNA in Dioscorea bulbifera L. Theor. Appl. Genet. 81: 461–470.

Vaser, R., Sovic, I., Nagarajan, N. and Šikic, M. (2017) Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27: 737–746.

Vasimuddin, M., Misra, S., Li, H. and Aluru, S. (2019) Efficient architecture- aware acceleration of BWA-MEM for multicore systems. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 314–324. IEEE, Rio de Janeiro, Brazil.

White, J. and Rees, H. (1987) Chromosome weights and measures in Petunia. Heredity 58: 139–143.

Wright, S. (1949) The genetical structure of populations. Ann. Eugen. 15: 323–354.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る