リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Investigation of proton-3He Elastic Scattering at Intermediate Energies」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Investigation of proton-3He Elastic Scattering at Intermediate Energies

Nakai Shinnosuke 東北大学

2021.03.25

概要

Three-nucleon forces (3N Fs) play an important role for various nuclear phenomena. In the study of the deuteron-proton (d-p) scattering, clear evidence of the 3N F effects were found at the cross section minimum. In recent years, much attention has been devoted to the 3N F effects in a system of 4N -scattering, e.g. p-3He scattering. The system is the simplest one for investigating nuclear interactions in the 3N subsystems with the total isospin T = 3/2. For the purpose of pinning down signatures of 3N Fs in comparison with the rigorous numerical 4N calculations, we performed the measurements of p-3He elastic scattering at intermediate energies; the measurement of cross section and proton analyzing power Ay at 65 MeV, and the measurement of the proton analyzing power Ay, 3He analyzing power A0y, and the spin correlation coefficient Cy,y at 100 MeV.

The measurement of the cross section and the proton analyzing power Ay at 65 MeV was performed using a polarized proton beam and a gaseous 3He target system at the WS beamline of the Ring Cyclotron Facility of RCNP, Osaka University. The data were taken in a wide angular range of θc.m. = 26.9◦–170.1◦. For the cross section the statistical error is better than ± 2 % and the systematic uncertainties are estimated to be 3 % at most. For the proton analyzing power Ay, the statistical uncertainties were 0.02 or less and the systematic uncertainties were 0.02 at most.

In order to extend the measurements to the spin observables including the spin cor- relation coefficient, we have developed the polarized 3He target system. We constructed a polarized 3He target cell based on AH-SEOP method. The 3He target polarization was determined with an accuracy of 6.2 % and the maximum 3He polarization was 40 %.

The measurement of the spin correlation coefficient Cy,y as well as the proton and 3He analyzing powers at 100 MeV was performed at the ENN beamline of RCNP. We newly installed the polarized 3He target and detector system as well as the beam line polarimeter for this experiment. We obtained the experimental data in a wide angular range of θc.m. = 46.9◦–149.2◦. For the proton analyzing power Ay and the 3He analyzing power A0y, the statistical uncertainties are less than 0.02 and 0.03, respectively. The systematic uncertainties are estimated to be 0.02 or less for both the analyzing poewrs. For the spin correlation coefficient Cy,y, the statistical uncertainties vary 0.01–0.06 depending on the measured angles, and the systematic errors do not exceed the statistical ones for almost the measured angles.

The obtained results were compared to the rigorous 4N -scattering calculations based on the realistic nucleon-nucleon (NN ) potentials and a model with ∆-isobar excitation. Clear discrepancies have been found for some of the measured observables, especially in the angular regime around the cross section minimum. Theoretical predictions using scaling relations between the calculated cross section and the 3He binding energy are not successful to reproduce the data. Large sensitivity found in the calculated cross sections for the NN potentials and rather small ∆-isobar effects in the cross section are noticed as different features from those in the d-p elastic scattering. For the spin correlation coefficient Cy,y a large ∆-isobar effects are predicted. The angular dependencies of the experimental data for the Cy,y at 100 MeV are mostly explained by taking into ∆-isobar effects. These results indicate that the spin correlation coefficient Cy,y is a prominent observable to investigate the ∆-isobar effects in p-3He elastic scattering.

From the obtained results we conclude that the p-3He elastic scattering at intermediate energies is an excellent tool to explore the nuclear interactions including 3N Fs that could not be accessible by the 3N scattering.

参考文献

[1] H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48–57 (1935).

[2] C. M. G. Lattes et al., Nature 159, 694–697 (1947).

[3] M. Taketani, S. Nakamura and M. Sasaki, Prog. Theor. Phys. 6, 581–586 (1951).

[4] M. H. MacGregor, R. A. Arndt and R. M. Wright, Phys. Rev. 182, 1714–1728 (1969).

[5] V. G. J. Stoks et al., Phys. Rev. C 48, 792–815 (1993).

[6] R. Navarro P´erez, J. E. Amaro and E. Ruiz Arriola, Phys. Rev. C 91, 029901 (2015).

[7] R. L. Workman, W. J. Briscoe and I. I. Strakovsky, Phys. Rev. C 94, 065203 (2016).

[8] R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, Phys. Rev. C 51, 38–51 (1995).

[9] R. Machleidt, Phys. Rev. C 63, 024001 (2001).

[10] V. G. J. Stoks et al., Phys. Rev. C 49, 2950–2962 (1994).

[11] R. Machleidt, K. Holinde and Ch. Elster, Phys. Rep. 149, 1–89 (1987).

[12] P. Doleschall et al., Phys. Rev. C 67, 064005 (2003).

[13] P. Doleschall, Phys. Rev. C 69, 054001 (2004).

[14] A. Nogga et al., Phys. Lett. B 409, 19–25 (1997).

[15] E. Wigner, Phys. Rev. 43, 252–257 (1933).

[16] J. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360–365 (1957).

[17] S. Coon et al., Nucl. Phys. A 317, 242–278 (1979).

[18] S. A. Coon and W. Gl¨ockle, Phys. Rev. C 23, 1790 (1981).

[19] S. A. Coon and J. L. Friar, Phys. Rev. C 34, 1060 (1986).

[20] B. S. Pudliner et al., Phys. Rev. C 56, 1720–1750 (1997).

[21] J. L. Friar, D. Hu¨ber and U. van Kolck, Phys. Rev. C 59, 53 (1999).

[22] S. Coon and H. Han, Few–Body Syst. 30, 131–141 (2001).

[23] H. Wita-la et al., Phys. Rev. C 63, 024007 (2001).

[24] D. Hu¨ber et al., Few–Body Syst. 30, 95–120 (2001).

[25] J. Adam, M. T. Pen˜a and A. Stadler, Phys. Rev. C 69, 034008 (2004).

[26] S. C. Pieper et al., Phys. Rev. C 64, 014001 (2001).

[27] A. Deltuva, R. Machleidt and P. U. Sauer, Phys. Rev. C 68, 024005 (2003).

[28] A. Deltuva, A.C. Fonseca and P.U. Sauer, Phys. Lett. B 660, 471–477 (2008).

[29] A. Deltuva and P. U. Sauer, Phys. Rev. C 91, 034002 (2015).

[30] E. Epelbaum, W. Gl¨ockle and Ulf-G. Meißner, Nucl. Phys. A 637, 107–134 (1998).

[31] E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654–741 (2006).

[32] E. Epelbaum, arXiv:1908.09349 (2019).

[33] V. Bernard et al., Phys. Rev. C 77, 064004 (2008).

[34] V. Bernard et al., Phys. Rev. C 84, 054001 (2011).

[35] P. Reinert, H. Krebs and E. Epelbaum, Eur. Phys. J. A 54, 86 (2018).

[36] E. Epelbaum et al., Phys. Rev. C 99, 024313 (2019).

[37] E. Epelbaum et al., Eur. Phys. J. A 56, 92 (2020).

[38] W. Gl¨ockle et al., Phys. Rep. 274, 107–285 (1996).

[39] H. Wita-la et al., Phys. Rev. Lett. 81, 1183–1186 (1998).

[40] H. Sakai et al., Phys. Rev. Lett. 84, 5288–5291 (2000).

[41] K. Sekiguchi et al., Phys. Rev. C 65, 034003 (2002).

[42] K. Sekiguchi et al., Phys. Rev. Lett. 95, 162301 (2005).

[43] K. Sekiguchi et al., Phys. Rev. C 96, 064001 (2017).

[44] S. Nemoto et al., Phys. Rev. C 58, 2599–2602 (1998).

[45] S. C. Pieper, K. Varga and R. B. Wiringa, Phys. Rev. C 66, 044310 (2002).

[46] A. Akmal, V. R. Pandharipande and D. G. Ravenhall, Phys. Rev. C 58, 1804–1828 (1998).

[47] S. Gandolfi et al., Eur. Phys. J. A 50, 10 (2014).

[48] A. Deltuva and A. C. Fonseca, Phys. Rev. C 87, 054002 (2013).

[49] A. C. Fonseca and A. Deltuva, Few–Body Syst. 58 (2017).

[50] R. H. Lovberg, Phys. Rev. 103, 1393–1397 (1956).

[51] K. F. Famularo et al., Phys. Rev. 93, 928 (1954).

[52] J. E. Brolley et al., Phys. Rev. 117, 1307–1316 (1960).

[53] T. Clegg et al., Nucl. Phys. 50, 621–628 (1964).

[54] D. G. McDonald, W. Haeberli and L. W. Morrow, Phys. Rev. 133, B1178–B1182 (1964).

[55] C. Kim et al., Nucl. Phys. 58, 32 – 48 (1964).

[56] L. Drigo et al., Nucl. Phys. 89, 632 – 640 (1966).

[57] S. Harbison et al., Nucl. Phys. A 150, 570 – 586 (1970).

[58] R. L. Hutson et al., Phys. Rev. C 4, 17–22 (1971).

[59] B. T. Murdoch et al., Phys. Rev. C 29, 2001–2008 (1984).

[60] M. Viviani et al., Phys. Rev. Lett. 86, 3739–3742 (2001).

[61] B. M. Fisher et al., Phys. Rev. C 74, 034001 (2006).

[62] S. D. Baker et al., Nucl. Phys. A 160, 428–436 (1971).

[63] N. Jarmie and J. H. Jett, Phys. Rev. C 10, 57–59 (1974).

[64] J. Birchall et al., Phys. Rev. C 29, 2009–2012 (1984).

[65] M. T. Alley and L. D. Knutson, Phys. Rev. C 48, 1890–1900 (1993).

[66] D. Mu¨ller, R. Beckmann and U. Holm, Nucl. Phys. A 311, 1–10 (1978).

[67] R. H. McCamis et al., Phys. Rev. C 31, 1651–1655 (1985).

[68] T. V. Daniels et al., Phys. Rev. C 82, 034002 (2010).

[69] L. G. Votta et al., Phys. Rev. C 10, 520–528 (1974).

[70] N. P. Goldstein, A. Held and D. G. Stairs, Can. J. Phys. 48, 2629–2639 (1970).

[71] J. S. Wesick et al., Phys. Rev. C 32, 1474–1487 (1985).

[72] H. Langevin-Joliot et al., Nucl. Phys. A 158, 309 – 320 (1970).

[73] Y. Shimizu et al., Phys. Rev. C 76, 044003 (2007).

[74] M. Viviani et al., Phys. Rev. Lett. 111, 172302 (2013).

[75] A. Kievsky et al., Nuclear Physics A 607, 402 – 424 (1996).

[76] Y. Wada, PhD thesis, Tohoku University (2017).

[77] A. Watanabe, PhD thesis, Tohoku University (2020).

[78] K. Hatanaka et al., Nucl. Instr. and Meth. A 384, 575 – 582 (1997).

[79] T. Wakasa et al., Nucl. Instr. and Meth. A 482, 79 – 93 (2002).

[80] H. Matsubara et al., Nucl. Instr. and Meth. A 678, 122 – 129 (2012).

[81] M. Ieiri et al., Nucl. Instr. and Meth. A 257, 253 – 278 (1987).

[82] H. Okamura, Nucl. Instr. and Meth. A 443, 194 – 196 (2000).

[83] M. Fujiwara et al., Nucl. Instrum. Methods in Phys. Res. A 422, 484 – 488 (1999).

[84] A. Tamii et al., IEEE Transactions on Nuclear Science 43, 2488–2491 (1996).

[85] C.A. Goulding and J.G. Rogers, Nucl. Instr. and Meth. 153, 511 – 515 (1978).

[86] A. Sourkes et al., Nucl. Instr. and Meth. 143, 589 – 594 (1977).

[87] T. Ino et al., Physica B: Condensed Matter 404, 2667 – 2669 (2009).

[88] F. Allmendinger et al., Phys. Rev. Lett. 112, 110801 (2014).

[89] V. Sulkosky et al., Phys. Lett. B 805, 135428 (2020).

[90] F. D. Colegrove, L. D. Schearer and G. K. Walters, Phys. Rev. 132, 2561–2572 (1963).

[91] M. A. Bouchiat, T. R. Carver and C. M. Varnum, Phys. Rev. Lett. 5, 373–375 (1960).

[92] B. Chann et al., Journal of Applied Physics 94, 6908–6914 (2003).

[93] E. Babcock et al., Phys. Rev. Lett. 91, 123003 (2003).

[94] E. S. Hrycyshyn and L. Krause, Can. J. Phys. 48, 2761–2768 (1970).

[95] M. E. Wagshul and T. E. Chupp, Phys. Rev. A 49, 3854–3869 (1994).

[96] B. Larson et al., Phys. Rev. A 44, 3108–3118 (1991).

[97] A. Ben-Amar Baranga et al., Phys. Rev. Lett. 80, 2801–2804 (1998).

[98] C. B. Alcock, V. P. Itkin and M. K. Horrigan, Canadian Metallurgical Quarterly 23, 309–313 (1984).

[99] R. M. Herman, Phys. Rev. 137, A1062 (1965).

[100] W. C. Chen et al., Phys. Rev. A 75, 013416 (2007).

[101] N. R. Newbury et al., Phys. Rev. A 48, 4411–4420 (1993).

[102] G. D. Cates, S. R. Schaefer and W. Happer, Phys. Rev. A 37, 2877–2885 (1988).

[103] R. L. Gamblin and T. R. Carver, Phys. Rev. 138, A946–A960 (1965).

[104] H. Kon, Master’s thesis, Tohoku University (2016).

[105] J. Schmiedeskamp et al., Eur. Phys. J. D 38, 427–438 (2006).

[106] Q. Ye et al., Eur. Phys. J. A 44, 55–61 (2010).

[107] B. Lancor and T. G. Walker, Phys. Rev. A 83, 065401 (2011).

[108] David R. Lide, editor, CRC Handbook of Chemistry and Physics, Internet Version 2005, CRC Press, Boca Raton, FL (2005).

[109] K. Coulter et al., Nucl. Instrum. Methods in Phys. Res. A 276, 29 – 34 (1989).

[110] M. V. Romalis and W. Happer, Phys. Rev. A 60, 1385–1402 (1999).

[111] G. D. Cates et al., Phys. Rev. A 38, 5092–5106 (1988).

[112] G. Breit and I. I. Rabi, Phys. Rev. 38, 2082–2083 (1931).

[113] L. C. Balling, R. J. Hanson and F. M. Pipkin, Phys. Rev. 133, A607–A626 (1964).

[114] M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004–3011 (1998).

[115] E. Babcock et al., Phys. Rev. A 71, 013414 (2005).

[116] T. Ino, Journal of Physics: Conference Series 1316, 012012 (2019).

[117] V. P. Alfimenkov et al., Sov. J. Nucl. Phys. 25, 607 (1977).

[118] C. D. Keith et al., Phys. Rev. C 69, 034005 (2004).

[119] Y. Ikeda et al., Nucl. Instr. and Meth. A 833, 61–67 (2016).

[120] K. Hirota et al., Phys. Chem. Chem. Phys. 7, 1836–1838 (2005).

[121] S. Shibuya, Master’s thesis, Tohoku University (2018).

[122] N. Kalantan-Nayestanaki, Nuclear Physics A 737, 185 – 189, 2004.

[123] M. Moinester et al., Phys. Lett. B 230, 41–45 (1989).

[124] A. Erell et al., Phys. Rev. C 34, 1822 (1986).

[125] F. Irom et al., Phys. Rev. C 34, 2231 (1986).

[126] A. Deltuva, private communications.

[127] R. B. Wiringa, R. A. Smith and T. L. Ainsworth, Phys. Rev. C 29, 1207–1221 (1984).

[128] M. Inoue et al., SciPost Phys. Proc. page 4 (2020).

[129] H. Wita-la et al., Phys. Rev. C 68, 034002 (2003).

[130] Y. Koike and Y. Taniguchi, Few-Body Syst. 1, 13–36 (1986).

[131] O. P. Bahethi and M. G. Fuda, Phys. Rev. C 6, 1956–1963 (1972).

[132] M. Lacombe et al., Phys. Rev. C 21, 861–873 (1980).

[133] S. Nemoto, PhD thesis, Hannover University (1999).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る