リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Application of Oxygen Isotope to the Studies of Hydrothermal Mineral Deposits」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Application of Oxygen Isotope to the Studies of Hydrothermal Mineral Deposits

Oyunjargal, Luvsannyam 筑波大学

2021.02.04

概要

This research focuses on the oxygen isotope study of the Chandmani Uul IOCG and the Date-Nagai W-skarn deposits in order to discuss origins of ore-forming fluids.

The Chandmani Uul deposit is located in Dornogovi province, southeastern Mongolia. Iron oxide ores are hosted in the andesitic rocks of the Shar Zeeg Formation of Neoproterozoic to Lower-Cambrian age. Middle- to Upper-Cambrian bodies of granitic rocks have intruded into the host rocks in the western and southern regions of the deposit. The wall rocks around the iron oxide ore bodies were hydrothermally altered to form potassic, epidote, and sericite–chlorite alteration zones, and calcite and quartz veinlets are ubiquitous in the late stage. Since granitic rocks also underwent potassic alteration, the activity of the granitic rocks must have a genetic relation to the ore deposit. The ore mineral assemblage is dominated by iron oxides such as mushketovite, euhedral magnetite with concentric and/or oscillatory zoning textures, and cauliflower magnetite. Lesser amounts of chalcopyrite and pyrite accompany the iron oxides. Among all these products, mushketovite is dominant and is distributed throughout the deposit. Meanwhile, euhedral magnetite appears in limited amounts at relatively shallow levels in the deposit. By contrast cauliflower magnetite appears locally in the deeper parts of the deposit, and is associated with green-colored garnet and calcite. Sulfide minerals are ubiquitously associated with these iron oxides.

The oxygen isotope (δ18O) values of all types of magnetite, quartz, and epidote were found to be -5.9 – -2.8‰, 10.5 – 14.9‰, and 3.6 – 6.6‰, respectively. The δ18O values of quartz–magnetite pairs suggest an equilibrium isotopic temperature near 300°C. The calculated values of δ18O for the water responsible for magnetite ranged from 2 to 10‰. All the data obtained in this study suggest that the iron oxide deposit at the Chandmani Uul is a typical iron oxide–copper–gold deposit, and that this deposit was formed at an intermediate depth with potassic and sericite–chlorite alteration zones under the oxidized conditions of a hematite-stable environment.

The δ18O range estimated implies that the ore-forming fluid was supplied by a crystallizing granodioritic magma exsolving fluids at depth with a significant contribution of meteoric water.

The skarn-type tungsten deposit of the Date-Nagai mine is genetically related to the granodiorite batholith of the Iidateyama body. Skarn develops along the contact between pelitic hornfels and marble that remains as a small roof pendant body directly above the granodiorite batholith.

Zonal arrangement of minerals is observed in skarn. The zonation consists of wollastonite, garnet, garnet-epidote and vesuvianite-garnet zones, from marble to hornfels. Sheelite is accompanied in garnet, garnet-epidote and vesuvianite-garnet zones. The oxygen isotope values of skarn minerals were obtained such as δ18O = 4.6-7.7‰ for garnet, 6.1-7.0‰ for vesuvianite, 0.2-3.7‰ for scheelite, 6.0-10.7‰ for quartz and 8.7‰ for muscovite, respectively. Temperature of skarn-formation was calculated from oxygen isotopic values of sheelite-quartz pairs to be 288°C.

Calculated oxygen isotope values of fluid responsible for skarn minerals are 6.1-9.5‰ for garnet, 1.2-4.8‰ for sheelite, -1.3-3.6‰ for quartz and 4.5‰ for muscovite, respectively. Garnet precipitated from the fluids of different δ18O values from sheelite, quartz and muscovite. These δ18O values suggest that origin of fluid responsible for garnet was magmatic water, while the evidence of the presence of a meteoric component in the fluids responsible for middle to later stage minerals was confirmed.

参考文献

Amantov, V. A., Blagonravov, V. A., Borzakovskiy, Yu. A., Durante, M.V., Zonenshain, L. P., Luvsandanzan, B., Matrosov, P. S., Suetenko, I. B., Filippova, I. B. and Hasin, R. A. (1970) Main feature of Palaeozoic stratigraphy of Mongolian People's Republic. In Zaitsev, N. S., Luvsandanzan, B., Marinov, N. A., Menner, V. V., Pavlova, T. G., Peive, A. V., Timofeev, P. P., Tomurtogoo, O. and Yanshin, A. L. (eds.) Stratigraphy and tectonics of the Mongolian People's Republic. Nauka, Moscow, 8–63.

Armendáriz, M., Rosales, I., Bádenas, B., Piñuela, L., Aurell, M. and García– Ramos, J. C. (2013) An approach to estimate Lower Jurrasic seawater oxygen– isotope composition using 18O and Mg/Ca ratios of belemnite calcites (Early Pliensbachian, northern Spain). Terra Nova, 25, 439–445.

Arévalo, C., Grocott, J., Martin, W., Pringle, M. and Taylor, G. (2006) Structural setting of the Candelaria Fe oxide Cu–Au deposit, Chilean Andes (27°30’S). Econ. Geol. 101, 815–841.

Atherton, M. P. and Aguirre, L. (1992) Thermal and geotectonic setting of Cretaceous volcanic rocks near Ica, Peru, in relation to Andean crustal thinning. J. South Amer. Earth Sci., 5, 47–69.

Badarch, G., Cunningham, W. D. and Windley, B. F. (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J. Asian Earth Sci. 21, 87–110.

Barker, S. L. L., Dipple, G. M., Hickey, K. A., Lepore, W. A. and Vaughan, J. R. (2013) Applying stable isotopes to mineral exploration: Teaching an old dog new tricks. Econ. Geol., 108, 1–9.

Barton, M. D. (2014) Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems. In Scott S. D. (ed.) Geochemistry of mineral deposits, Treatise on geochemistry Vol. 10, 2nd ed., Elsevier, New York, 515–541.

Barton, M. D. and Johnson, D. A. (1996) Evaporitic–source model for igneous– related Fe oxide– (REE–Cu–Au–U) mineralization. Geology, 24, 259–262.

Benavides, J., Kyser, T. K., Clark, A. H., Oates, C. J., Zamora, R., Tranovschi, R. and Castillo, B. (2007) The Mantoverde iron oxide–copper–gold district, III Región, Chile: The role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization. Econ. Geol., 102, 415–440.

Bookstrom, A. A. (1977) The magnetite deposits of El Romeral, Chile. Econ. Geol., 72, 1101–1130.

Bottinga, Y. and Javoy, M. (1973) Comments on oxygen isotope geothermometry. Earth Planet. Sci. Lett., 20, 250–265.

Bottinga, Y. and Javoy, M. (1975) Oxygen isotope partitioning among the minerals and triplets in igneous and metamorphic rocks. Rev. Geophys. Space Phys., 13, 401-418.

Bowman, J. R., Covert, J. J., Clark, A. H. and Mathieson, G. A. (1985a) The Can Tung E-zone sheelite skarn orebody, Tungsten, Northwest Territories: Oxygen, hydrogen, and carbon isotope studies. Econ. Geol., 80, 1872-1895.

Bowman, J. R., O’Neil, J. R. and Essene, E. J. (1985b) Contact skarn formation at Elkhorn, Montana II: Origin and evolution of C-O-H skarn fluids. Amer. J. Sci., 285, 621-660.

Brown, P. E. and Essene, E. J. (1985) Activity variations attending tungsten skarn formation, Pine Creek, California. Contrib. Mineral. Petrol., 89, 358-369.

Bumburuu, G., Lkhundev, Sh. and Burentugs, J. (1990) Results of 1:200,000 scale geological mapping and general prospecting in Dundgobi and Dornogobi. Geologic Information Center, Ulaanbaatar, Open–File Report 4377, 700p. (in Russian).

Byamba, J., Lkhundev, Sh. and Tundev, S. (1990) New data on age of Upper Proterozoic deposits in Middle Gobi. Doklady Academii Nauk SSSR 312, 428– 431 (in Russian).

Cembrano, J., González, G., Arancibia, G., Ahumada, I., Olivares, V. and Herrera, V. (2005) Fault zone development and strain partitioning in an extensional strike–slip duplex: A case study from the Mesozoic Atacama fault system, Northern Chile. Tectonophysics, 400, 105–125.

Chacko, T., Cole, D. R. and Horita, J. (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geological systems. Rev. Miner. Geochem., 43, 1–81.

Chappell, B. W. (1999) Aluminum saturation in I– and S–type granites and the characterization of fractionated haplogranites. Lithos, 46, 535–551.

Charlie, D. and Rohan, W. (2006) Progress report of Chandmani Uul license block Mongolia. Unpublished Internal Report. IMMI, Ulaanbaatar, Report MR– 2006–13, 33p.

Chen, H. (2013) External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan. Ore Geol. Rev., 51, 74–78.

Chen, H., Clark, A. H., Kyser, T. K., Ullrich, T. D., Baxter, R., Chen, Y. and Moody, T. C. (2010) Evolution of the giant Marcona–Mina Justa iron oxide–copper– gold district, south–central Peru. Econ. Geol., 105, 155–185.

Chen, H., Kyser, T. K. and Clark, A. H. (2011) Contrasting fluids and reservoirs in the continuous Marcona and Mina Justa iron oxide–Cu (–Ag–Au) deposits, south–central Perú. Miner. Deposita, 46, 677–706.

Chiaradia, M., Banks, D., Cliff, R., Marschik, R. and Haller, A. (2006) Origin of fluids in iron oxide–copper–gold deposits: Constrains from 37Cl, 87Sr/86Sr, and Cl/Br. Miner. Deposita, 41,565–573.

Collins, B. I. (1977) Formation of sheelite-bearing and sheelite-barren skarns at Lost Creek, Pioneer Mountains, Montana. Econ. Geol., 72, 1505-1523.

Dare, S. A. S., Barnes, S. J., Beaudoin, G., Méric, J., Boutroy, E. and Potvin–Doucet, C. (2014) Trace elements in magnetite as petrogenetic indicators. Miner. Deposita, 49, 785–796.

Deer, W. A., Howie, R. A. and Zussman, J. (1992) The rock-forming minerals, 2nd ed., Pearson Education, London, 695p.

Dejidmaa, G., Bujinlkham, B., Eviihuu, A., Enkhtuya, B., Ganbaatar, T., Munkh– Erdene, N. and Oyuntuya, N. (1996) Distribution map of deposits and occurrences in Mongolia (scale 1:1,000,000). Geologic Information Center, Mineral Resources Authority of Mongolia, Ministry of Industry and Trade of Mongolia, Ulaanbaatar, Open–File Report, 280 p.

D’Errico, M. E., Lackey, J. S., Surpless, B. E., Loewy, S. L., Wooden, J. L., Barnes, J. D., Strickland, A. and Valley, J. W. (2012) A detailed record of shallow hydrothermal fluid flow in the Sierra Nevada magmatic arc from low-δ18O skarn garnet. Geology, 40, 763-766.

de Melo, G. H. C., Monteiro, L. V. S., Xavier, R. P., Moreto, C. P. N., Santiago, E. S. B., Dufrane, S. A., Aires, B. and Santos, A. F. F. (2017) Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from Paragenesis of hydrothermal alteration and U–Pb geochlonology. Miner. Deposita, 52, 709–732.

de Melo, G. H. C., Monteiro, L. V. S., Xavier, R. P., Moreto, C. P. N. and Santiago, E. (2019) Tracing fluid sources for the Salobo and Igarapé Bahia deposits: Implications for the genesis of the iron oxide¬–copper–gold deposits in the Carajás Province, Brazil. Econ. Geol., 114, 697–718.

Dupuis, C. and Beaudoin, G. (2011) Discriminant diagram for iron oxide trace element fingerprinting of mineral deposit types. Miner. Deposita, 46, 319–335.

Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J. and Lohmann, K. C. (2005) Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA. Hydrol. Process., 19, 4121–4146.

Einaudi, M. T., Meinert, L. D and Newberry, R. J. (1981) Skarn deposits. In Skinner, B. J. (ed.) Economic Geology 75th Anniversaly Volume. Economic Geology Publishing Company, El Paso, 317-391.

González, E., Kojima, S., Ichii, Y., Tanaka, T., Fujimoto, Y. and Ogata, T. (2018) Silician magnetite from the Copiapó Nordeste Prospect of Northern Chile and its implication for ore–forming conditions of iron oxide–copper–gold deposits. Minerals, 8, 529.

Groves, D. I., Bierlein, F. P., Meinert, L. D. and Hizman, M. W. (2010) Iron oxide copper–gold (IOCG) deposits through earth history: Implications for metallogenesis and sulfur saturation in primary magmas. Econ. Geol., 105, 641–654.

Hayashi, K., Maruyama, T., and Satoh, H. (2001) Precipitation of gold in a low– sulfidation epithermal gold deposits: insights from a submillimeter–scale oxygen isotope analysis of vein quartz. Econ. Geol., 96, 211–216.

Heidarian, H., Lentz, D., Alirezaei, S. and Peighambari, S. (2016) Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna–type Chadormalu magnetite–apatite deposit, Bafq district, Central Iran. Mineral. Petrol., 110, 927–942.

Hitzman, M. W. (2000) Iron oxide–Cu–Au deposits: What, where, when, and why. In Porter, T. M. (ed.) Hydrothermal iron oxide copper gold and related deposits: A global perspective. Australian Mineral Foundation, Adelaide, 9–25.

Hitzman, M. W., Oreskes, N. and Einaudi, M. T. (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambr. Res., 58, 241–287.

Huang, X. –W., Sappin, A. –A., Boutory, É., Beaudoin, G., and Makvandi, S. (2019) Trace element composition of igneous and hydrothermal magnetite from porphyry deposits: Relationship to deposit subtype and magmatic affinity. Econ. Geol., 114, 917–952.

Irvine, T. N. and Barragar, R. A. (1971) A guide to the chemical classification of common volcanic rocks. Can. J. Earth Sci., 8, 523–548.

Ishihara, S. and Matsuhisa, Y. (2004) Oxygen isotopic cpnstraints on the geneses of the Cretaceous granitoids in the Kitakami and Abukuma terrains, Northeast Japan. Bull. Geol. Survey Japan, 55, 57-66.

Jaffrés, J. B. D., Shields, G. A. and Wallmann, K. (2007) The oxygen isotope evolution of seawater: A critical review of a long–standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci. Rev., 83, 83–122.

Khasgerel, B. (2010) Geology, Whole-rock geochemistry, Mineralogy and Stable Isotopes (O, H and S) of Sericitic and Advanced Argillic Alteration Zones, Oyu Tolgoi Porphyry Cu-Au Deposits, Mongolia. Doctoral thesis. University of Tsukuba.

Knauth, L. P. and Lowe, D. R. (1978) Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts. Earth Planet. Sci. Lett., 41, 209–222.

Knauth, L. P. and Roberts, S. K. (1991) The hydrogen and oxygen isotope history of the Silurian–Permian hydrosphere as determined by direct measurement of fossil water. In Taylor H. P. et al. (eds.) Stable isotope geochemistry: A tribute to Samuel Epstein. Geochemical Society, Spec. Publ., 3, 91–104.

Knipping, J. L., Bilenker, L. D., Simon, A. C., Reich, M., Barra, F., Deditius, A., Wälle, M., Heinrich, C., Holtz, F. and Munizaga, R. (2015) Trace elements in magnetite from massive iron oxide–apatite deposits indicate a combined formation by igneous and magmatic–hydrothermal processes. Geochim. Cosmochim. Acta, 171, 15–38.

Knipping, J. L., Fiege, A., Simon, A. C., Oeser, M., Reich, M. and Bilenker, L. D. (2019) In–situ iron isotope analyses reveal igneous and magmatic– hydrothermal growth of magnetite at the Los Colorados Kiruna–type iron oxide–apatite deposit, Chile. Amer. Miner., 104, 471–484.

Kubo, K., Yamamoto, T., Murata, Y. and Makino, M. (2014) Geology of the Kawamata district. Quadrangle Series, 1:50,000, Geological Survey of Japan, Tsukuba, 86p. (in Japanese with English abstract).

La Cruz, N. L., Simon, A. C., Wolf, A. S., Barra, F. and Gagnon, J. E. (2019) The geochemistry of apatite from the Los Colorados iron oxide–apatite deposit, Chile: implications for ore genesis. Miner. Deposita, 54, 1143–1156.

Li, Z. –Z., Qin, K. –Z., Li, G. –M., Jin, L. –Y., Song, G. –X. and Han, R. (2019) Inclusion of meteoric water triggers molybdenite precipitation in porphyry Mo deposits: A case study of the Chalukou giant Mo deposit. Ore Geol. Rev., 109, 144–162.

London, D. (2005) Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos, 80, 281-303.

Maniar, P. D. and Piccoli, P. M. (1989) Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull., 101, 635–643.

Marangoanha, B., de Oliveira, D. C., de Oliveira, V. E. S., Galarza, M. A. and Lamarão (2019) Neoarchean A–type granitoids from Carajás province (Brazil): New insights from geochemistry, geochronology and microstructural analysis. Precambr. Res., 324, 86–108.

Marschik, R. and Fontboté, L. (2001) The Candelaria–Punta del Cobre iron oxide Cu–Au (–Zn–Ag) deposits, Chile. Econ. Geol., 96, 1799–1826.

Marschik, R., Fontignie, D., Chiaradia, M. and Voldet, P. (2003) Geochemical and Sr–Nd–O isotope composition of granitoids of the Early Cretaceous Copiapó plutonic complex (27°30’S), Chile. J. South Amer. Earth Sci., 16, 381–398.

Mathieson, G. A. and Clark, A. H. (1984) The Can Tung E-zone sheelite skarn orebody, Tungsten, Northwest Territories: A revised genetic model. Econ. Geol., 79, 883-901.

Matsuhisa, Y., Goldsmith, J. R. and Clayton, R. N. (1979) Oxygen isotope fractionation in the system quartz–albite–anorthite–water. Geochim. Cosmochim. Acta, 43, 1131–1140.

Matthews, A., Goldsmith, J. R. and Clayton, R. N. (1983) Oxygen isotope fractionations involving pyroxenes: the calibration of mineral-pair geothermometers. Geochim. Cosmochim. Acta, 47, 631-644.

Matthews, A. and Schliestedt, M. (1984) Evolution of blueschist and greenschist rocks of Sifnos, Cylades, Greece. Contrib. Mineral. Petrol., 88, 150–163.

McDonough, W.F. and Sun, S.S. (1995) The composition of the Earth. Chem. Geol., 120, 223–253.

Meinert, L.D., Dipple, G.M and Nicolescu, S. (2005) World Skarn Deposits. In Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. and Richards, J. P. (eds.) Economoc Geology 100th Annversary Volume. Society of Economoc Geologists Inc., Littleton, 299-336.

Ménard, J. J. (1995) Relationship between altered pyroxene diorite and the magnetite mineralization in the Chilean iron belt, with emphasis on the El Algarrobo iron deposits (Atacama region, Chile). Miner. Deposita, 30, 268– 274.

Middlemost, E. A. K. (1994) Naming materials in the magma/igneous rock system. Earth Sci. Rev., 37, 215–224.

Ministry of Economy, Trade and Industry (METI) (1987) Report on rare metal resources: Eastern Abukuma area. 168 p. (In Japanese).

Monecke, J., Reynolds, T. J., Tsuruoka, S., Bennett, M. M. and Skews, W. B. (2018) Quartz solubility in the H2O–NaCl systems: A framework for understanding vein formation in porphyry copper deposits. Econ. Geol., 113, 1007–1046.

Monteiro, L. V. S., Xavier, R. P., de Carvalho, E. R., Hitzman, M. W., Johnson, C. A., de Souza, C. R. and Torresi, I. (2008) Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide–copper– gold deposit, Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints. Miner. Deposita, 43, 129–159.

Nadoll, P., Angerer, T., Mauk, J. L., French, D., and Walshe, J. (2014) The chemistry of hydrothermal magnetite: A review. Ore Geol. Rev., 61, 1–32.

Nesbitt, H. W. and Young, G. M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715– 717.

Newberry, R. J. and Swanson, S. E. (1986) Sheelite skarn granitoids: an evaluation of the role of magmatic source and process. Ore Geol. Rev., 1, 57-81.

Nokleberg, W. J. (1981) Geologic setting, petrology, and geochemistry of zoned tungsten-bearing skarns at the Strawberry mine, central Sierra Nevada, California. Econ. Geol., 26, 111-133.

Ohmoto, H. (1986) Stable isotope geochemistry of ore deposits. In Valley, J. W., Taylor, H. P. Jr. and O’Neil, J. R. (eds.) Stable isotopes in high temperature geological processes. Rev. Mineral., 16, 491–559.

O’Neil, J. R. and Taylor, H. P. Jr. (1969) Oxygen isotope equilibrium between muscovite and water. Amer. Miner., 52, 1414-1437.

Oyunjargal, L., Matsukura, K. and Hayashi, K. (2019) Oxygen isotopic study on the Date-Nagai skarn–type tungsten deposit, northeastern Japan. Resour. Geol., 69, 448–459.

Oyarzún, R., Oyarzún, J., Ménard, J. J. and Lillo, J. (2003) The Cretaceous iron belt of northern Chile: Role of oceanic plates, a superplume event, and a major shear zone. Miner. Deposita, 38, 640–646.

Oyarzún, R., Rodriguez, M., Pincheria, M., Doblas, M. and Helle, S. (1999) The Candelaria (Cu–Fe–Au) and Punta de Cobre (Cu–Fe) deposits (Copiapó, Chile): a case for extension–related granitoid emplacement and mineralization processes?. Miner. Deposita, 34, 799–801.

Öztürk, Y. Y., Helvaci, C. and Satir, M. (2008) The influence of meteoric water on skarn formation and late–stage hydrothermal alteration at the Evciler skarn occurrences, Kazdag, NW Turkey. Ore Geol. Rev., 34, 271–284.

Paterson, C. J. (1982) Oxygen isotopic evidence for the origin and evolution of a scheelite ore-forming fluid, Glenorchy, New Zealand. Econ. Geol., 77, 1672- 1678.

Pearce, J. A., Harris, N. B. W. and Tindle, A. G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25, 956–983.

Pollard, P. J. (2006) An intrusion–related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces. Miner. Deposita, 41, 179–187.

Rieger, A. A., Marschik, R., Díz, M., Hölzl, S., Chiradia, M., Akker, B. and Spangenberg, J. E. (2010) The hypogene iron oxide–copper–gold mineralization in the Mantoverde district, Northern Chile. Econ. Geol., 105, 1271–1290.

Rieger, A. A., Marschik, R. and Díaz, M. (2012) The evolution of the hydrothermal IOCG system in the Mantoverde district, northern Chile: New evidence from microthermometry and stable isotope geochemistry. Miner. Deposita, 47, 359– 369.

Robb, L. (2005) Introduction to ore–forming processes. Blackwell, Malden, 373p. Rojas–Agramonte, Y., Kroner, A., Demoux, A., Xia, X., Wang, W., Donskaya, T., Liu, D. and Sun, M. (2011) Detrital and xenocrystic zircon ages from Neoproterozoic to Palaezoic arc terranes of Mongolia: significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondowana Res., 19, 751–763.

Rojas, P., Barra, F., Deditius, A., Reich, M., Simon, A. C., Roberts, M. P. and Rojo, M. (2018) New contributions to the understanding of iron oxide–apatite deposits revealed by magnetite ore geochemistry at El Romeral deposit, Chile. Ore Geol. Rev., 93, 413–435.

Safanova, I. Y. and Santosh, M. (2014) Accretionary complexes in the Asia–Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plume. Gondwana Res., 25, 126–158.

Scheuber, E. and Andriessen, P. A. M. (1990) The kinematic and geodynamic significance of the Atacama fault zone, northern Chile. J. Structural Geol., 12, 243–257.

Scheuber, E., Hammerschmidt, K., and Friedrichsen, H. (1995) 40Ar/39Ar and Rb– Sr analyses from ductile shear zones from the Atacama fault zone, northern Chile: The age of deformation. Tectonophysics, 250, 61–87.

Shanks, W. C. III (2014) Stable isotope geochemistry of mineral deposits. In Scott S. D. (ed.) Geochemistry of mineral deposits, Treatise on geochemistry Vol. 10, 2nd ed., 59-85, Elsevier, New York.

Shemesh, A., Kolodny, Y. and Luz, B. (1983) Oxygen isotope variations in phosphate of biogenic apatites. II. Phosphorite rocks. Earth Planet. Sci. Lett., 64, 405–416.

Sheppard, S. M. F. (1986) Characterization and isotopic variations in natural water. In Valley, J. W., Taylor, H. P. Jr. and O’Neil, J. R. (eds.) Stable isotopes in high temperature geological processes. Rev. Mineral., 16, 165-183.

Shieh, Y. and Zhang, G. (1991) Stabe Isotope stadies of quartz-vein type tungsten deposits in Dajishan Mine, Jiangxi Province, Southeast China. In H. P. Taylor, Jr., J. R. O'Neil and I. R. Kaplan (eds.) Stable Isotope Geochemistry: A Tribute to Samuel Epstein. The Geochemical Society, Special Publication No.3, 425- 436.

Shimazaki, H. and Kusakabe, M. (1993) Oxygen isotope study of the Tsumo Cu- Zn-Fe-W skarn deposits, Japan. Resour. Geol., 43, 245-254.

Shu, Q. and Lai, Y. (2017) Fluid inclusion and oxygen isotope constraints on the origin and hydrothermal evolution of the Haisugou porphyry Mo deposit in the northern Xilamulu district, NE China. Geofluids, 2017, ID4094582.

Sillitoe, R. H. (2003) Iron oxide–copper–gold deposits: An Andean view. Miner. Deposita, 38, 787–812.

Simon, A. C., Knipping, J., Reich, M., Barra, F., Dediitus, A. P., Bilenker, L. and Childress, T. (2018) Kiruna–type iron oxide–apatite (IOA) and iron oxide– copper–gold (IOCG) deposits form by a combination of igneous and magmatic–hydrothermal processes: evidence from the Chilean iron belt. In Arribas, A. M. and Maul, J. L. (eds.) Metals, Minerals, and Society. SEG Spec. Publ. 21, Society of Economic Geologists Inc., Littleton, 89–114.

Sturm, M. B., Ganbaatar, O., Voigt, C. C. and Kaczensky, P. (2017) First field– based observations of 2H and 18O values of event–based precipitation, rivers and other water bodies in the Dzungarian Gobi, SW Mongolia. Isotopes Environ. Health Studies, 53, 157–171.

Sun, S. S. and McDonough, W. F. (1989) Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes. In Saunders, A. D. and Norry, M. J. (eds.) Magmatism in the ocean basins, Geological Society, London, Special Publ. 42, 313–345.

Suzuki, Y. and Hayashi, K. (2019) Mineralogy, fluid inclusions, and sulfur isotopes of the Huanzala deposits, Peru: Early skarn and late polymetallic replacement style mineralizations. Resour. Geol., 69, 249–269.

Taylor, H. P. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol., 69, 843– 883.

Taylor, H.P. (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In Barnes, H.L. (ed.) Geochemistry of hydrothermal ore deposits, 3rd ed., John Wiley & Sons, New York, 229–302.

Taylor, B. E. and O’Neil, J. R. (1977) Stable isotope studies of metasomatic Ca-Fe- Al-Si skarns and associated metamorohic and igneous rocks, Osgood Mountain, Nevada. Contrib. Moneral. Petrol., 63, 1-49.

Thomas, C., Cole, D. R. and Horita, J. (2001) Equilibrium oxygen, hydrogen and carbon isotope factionation factors applicable to geologic systems. Rev. Mineral. Geochem., 43, 1-81.

Tornos, F., Velasco, F. and Hanchar, J. M. (2016) Iron–rich melts, magmatic magnetite, and superheated hydrothermal systems: the El Laco deposit, Chile. Geology, 44, 427–430.

Torresi, I., Xavier, R. P., Bortholoto, D. F. A. and Monteiro, L. V. S. (2012) Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide–copper–gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis. Miner. Deposita. 47, 299–323.

Troll, V. R., Weis, F. A., Jonsson, E., Andersson, U. B., Afshin Majidi, S., Högdahl, K., Harris, C., Millet, M. –A., Saravanan Chinnasamy, S., Kooijman, E. and Nilsson, K. P. (2019) Global Fe–O isotope correlation reveals magmatic origin of Kiruna–type apatite–iron–oxide ores. Nature Commun.Tornos, doi.org/10.1038/s41467-019-09244-4.

Ukhnaa, G. and Baasan, B. (2016) Iron deposits in Mongolia. GCOM, Ulaanbaatar, 283 p. (in Mongolian).

Wesolowski, D. and Ohmoto, H. (1986) Calculated oxygen isotope fractionation factors between water and the minerals sheelite and powellite Econ. Geol., 81, 471-477.

Wilhem, C., Windley, B. F. and Stampfli, G. M. (2012) The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth Sci. Rev., 113, 303–341.

Williams, P. J., Barton, M. D., Jhonson, D. A., Fontboté, L., de Haller, A., Mark, G., Oliver, N. H. S. and Marschik, R. (2005) Iron oxide–copper–gold deposits: Geology, space–time distribution, and possible models of origin. In Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. and Richards, J. P. (eds.) Economic Geology 100th Anniversary Volume. Society of Economic Geologists Inc., Littleton, 371–405.

Windley, B. F., Alexeive, D., Xiao, W., Kroner, A. and Badarch, G. (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. London, 163, 31–34.

Yabusaki, S, (2016) Distribution of stable isotopes of oxygen and hydrogen in spring water and groundwater at Fukushima Prefecture. J. Center Regional Affairs Fukushima Univ., 27, 31-41. (in Japanese)

Yamamoto, T. (1996) Stratigraphy and eruption style of Miocene volcanic rocks in the Ryozen district, NE Japan. J. Geol. Soc. Japan, 102, 730-750. (in Japanese with English abstract)

Yamamoto, T. and Hoang, N. (2009) Synchronous Japan Sea opening Miocene fore-arc volcanism in the Abukuma Mountains, NE Japan: an advancing hot asthenosphere flow versus Pacific slab melting. Lithos

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る