リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Chiral crossover in QCD at zero and non-zero chemical potentials」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Chiral crossover in QCD at zero and non-zero chemical potentials

大野, 浩史 HotQCD Collaboration Bazavov, A. Ding, H.-T. Hegde, P. Kaczmarek, O. Karsch, F. Karthik, N. Laermann, E. Lahiri, Anirban Larsen, R. Li, S.-T. Mukherjee, Swagato Petreczky, P. Sandmeyer, H. Schmidt, C. Sharma, S. Steinbrecher, P. 筑波大学 DOI:10.1016/j.physletb.2019.05.013

2020.02.06

概要

We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon (B), strangeness (S), electric charge (Q), and isospin (I) chemical potentials mu(X=B,Q,S,I). The results were obtained using lattice QCD calculations carried out with two degenerate up and down dynamical quarks and a dynamical strange quark, with quark masses corresponding to physical values of pion and kaon masses in the continuum limit. By parameterizing pseudo-critical temperatures as T-c(mu(x)) = T-c(0)[1-kappa(X)(2)(mu(X)/T-c(0))(2) - kappa(X)(4)(mu(X)/T-c(0))(4)], we determined kappa(X)(2) and kappa(X)(4) from Taylor expansions of chiral observables in mu(X). We obtained a precise result for T-c(0) = (156.5 +/- 1.5) MeV. For analogous thermal conditions at the chemical freeze-out of relativistic heavy-ion collisions, i.e., mu(S)(T, mu(B)) and mu(Q)(T, mu(B)) fixed from strangeness-neutrality and isospin-imbalance, we found kappa(B)(2) = 0.012(4) and kappa(B)(4) = 0.000(4). For mu(B) less than or similar to 300 MeV, the chemical freeze-out takes place in the vicinity of the QCD phase 4 boundary, which coincides with the lines of constant energy density of 0.42(6) GeV/fm(3) and constant entropy density of 3.7(5) fm(-3). (C) 2019 The Author(s). Published by Elsevier B.V.

この論文で使われている画像

参考文献

[1] H.-T. Ding, F. Karsch, S. Mukherjee, Thermodynamics of strong-interaction matter from lattice QCD, Int. J. Mod. Phys. E 24 (10) (2015) 1530007, https://

doi.org/10.1142/S0218301315300076, arXiv:1504.05274.

[2] M.M. Wygas, I.M. Oldengott, D. Bödeker, D.J. Schwarz, Cosmic QCD epoch

at nonvanishing lepton asymmetry, Phys. Rev. Lett. 121 (20) (2018) 201302,

https://doi.org/10.1103/PhysRevLett.121.201302, arXiv:1807.10815.

[3] K. Fukushima, T. Hatsuda, The phase diagram of dense QCD, Rep. Prog. Phys.

74 (2011) 014001, https://doi.org/10.1088/0034-4885/74/1/014001, arXiv:1005.

4814.

[4] W. Busza, K. Rajagopal, W. van der Schee, Heavy ion collisions: the big picture,

and the big questions, Annu. Rev. Nucl. Part. Sci. 68 (2018) 339–376, https://

doi.org/10.1146/annurev-nucl-101917-020852, arXiv:1802.04801.

[5] A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Decoding the

phase structure of QCD via particle production at high energy, Nature 561 (7723) (2018) 321–330, https://doi.org/10.1038/s41586-018-0491-6,

arXiv:1710.09425.

[6] A. Bazavov, et al., The chiral and deconfinement aspects of the QCD transition,

Phys. Rev. D 85 (2012) 054503, https://doi.org/10.1103/PhysRevD.85.054503,

arXiv:1111.1710.

[7] C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, C. Schmidt,

L. Scorzato, The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66 (2002) 074507, https://doi.org/10.1103/PhysRevD.

66.074507, arXiv:hep-lat/0204010.

[8] C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, C. Schmidt,

The equation of state for two flavor QCD at nonzero chemical potential, Phys.

Rev. D 68 (2003) 014507, https://doi.org/10.1103/PhysRevD.68.014507, arXiv:

hep-lat/0305007.

[9] R.V. Gavai, S. Gupta, Pressure and nonlinear susceptibilities in QCD at finite

chemical potentials, Phys. Rev. D 68 (2003) 034506, https://doi.org/10.1103/

PhysRevD.68.034506, arXiv:hep-lat/0303013.

[10] P. Steinbrecher, The QCD Crossover up to O (μ6B ) from Lattice QCD, Ph.D. thesis,

Universität Bielefeld, 2018, https://pub.uni-bielefeld.de/record/2919977.

[11] C.R. Allton, M. Doring, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann,

K. Redlich, Thermodynamics of two flavor QCD to sixth order in quark chemical

potential, Phys. Rev. D 71 (2005) 054508, https://doi.org/10.1103/PhysRevD.71.

054508, arXiv:hep-lat/0501030.

HotQCD Collaboration / Physics Letters B 795 (2019) 15–21

[12] H.-T. Ding, P. Hegde, F. Karsch, A. Lahiri, S.-T. Li, S. Mukherjee, P. Petreczky, Chiral phase transition of (2 + 1)-flavor QCD, Nucl. Phys. A 982

(2019) 211, https://doi.org/10.1016/j.nuclphysa.2018.10.032, arXiv:1807.05727

[hep-lat], arXiv:1905.11610 [hep-lat].

[13] G. Endrodi, L. Gonglach, Chiral transition via the Banks-Casher relation, in: 36th

International Symposium on Lattice Field Theory, Lattice 2018, East Lansing,

MI, United States, July 22–28, 2018, 2018, arXiv:1810.09173.

[14] F. Burger, E.-M. Ilgenfritz, M. Kirchner, M.P. Lombardo, M. Müller-Preussker, O.

Philipsen, C. Urbach, L. Zeidlewicz, Thermal QCD transition with two flavors of

twisted mass fermions, Phys. Rev. D 87 (7) (2013) 074508, https://doi.org/10.

1103/PhysRevD.87.074508, arXiv:1102.4530.

[15] F. Cuteri, O. Philipsen, A. Sciarra, Progress on the nature of the QCD thermal

transition as a function of quark flavors and masses, arXiv:1811.03840, 2018.

[16] S. Ejiri, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, P. Petreczky, C. Schmidt,

W. Soeldner, W. Unger, On the magnetic equation of state in (2 + 1)-flavor QCD,

Phys. Rev. D 80 (2009) 094505, https://doi.org/10.1103/PhysRevD.80.094505,

arXiv:0909.5122.

[17] T. Bhattacharya, et al., QCD phase transition with chiral quarks and physical

quark masses, Phys. Rev. Lett. 113 (8) (2014) 082001, https://doi.org/10.1103/

PhysRevLett.113.082001, arXiv:1402.5175.

[18] Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, The Order of the quantum chromodynamics transition predicted by the standard model of particle

physics, Nature 443 (2006) 675, https://doi.org/10.1038/nature05120, arXiv:

hep-lat/0611014.

[19] O. Kaczmarek, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, P. Petreczky, C.

Schmidt, W. Soeldner, W. Unger, Phase boundary for the chiral transition in

(2 + 1)-flavor QCD at small values of the chemical potential, Phys. Rev. D 83

(2011) 014504, https://doi.org/10.1103/PhysRevD.83.014504, arXiv:1011.3130.

[20] J. Engels, F. Karsch, The scaling functions of the free energy density and its

derivatives for the 3d O(4) model, Phys. Rev. D 85 (2012) 094506, https://doi.

org/10.1103/PhysRevD.85.094506, arXiv:1105.0584.

[21] J. Engels, F. Karsch, Finite size dependence of scaling functions of the threedimensional O(4) model in an external field, Phys. Rev. D 90 (1) (2014) 014501,

https://doi.org/10.1103/PhysRevD.90.014501, arXiv:1402.5302.

[22] C. Bonati, M. D’Elia, F. Negro, F. Sanfilippo, K. Zambello, Curvature of the pseudocritical line in QCD: Taylor expansion matches analytic continuation, Phys.

Rev. D 98 (5) (2018) 054510, https://doi.org/10.1103/PhysRevD.98.054510,

arXiv:1805.02960.

[23] A. Bazavov, et al., Fluctuations and correlations of net baryon number, electric

charge, and strangeness: a comparison of lattice qcd results with the hadron

resonance gas model, Phys. Rev. D 86 (2012) 034509, https://doi.org/10.1103/

PhysRevD.86.034509, arXiv:1203.0784.

[24] A. Bazavov, et al., The QCD equation of state to O (μ6B ) from lattice QCD, Phys.

Rev. D 95 (5) (2017) 054504, https://doi.org/10.1103/PhysRevD.95.054504,

arXiv:1701.04325.

[25] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G.P. Lepage, J. Shigemitsu, H.

Trottier, K. Wong, Highly improved staggered quarks on the lattice, with applications to charm physics, Phys. Rev. D 75 (2007) 054502, https://doi.org/10.

1103/PhysRevD.75.054502, arXiv:hep-lat/0610092.

[26] R.V. Gavai, S. Sharma, A faster method of computation of lattice quark number susceptibilities, Phys. Rev. D 85 (2012) 054508, https://doi.org/10.1103/

PhysRevD.85.054508, arXiv:1112.5428.

21

[27] R.V. Gavai, S. Sharma, Divergences in the quark number susceptibility: the origin and a cure, Phys. Lett. B 749 (2015) 8–13, https://doi.org/10.1016/j.physletb.

2015.07.036, arXiv:1406.0474.

[28] P. Hasenfratz, F. Karsch, Chemical potential on the lattice, Phys. Lett. B 125

(1983) 308–310, https://doi.org/10.1016/0370-2693(83)91290-X.

[29] H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom.

Control 19 (6) (1974) 716, https://doi.org/10.1109/TAC.1974.1100705.

[30] J.E. Cavanaugh, Unifying the derivations for the Akaike and corrected Akaike

information criteria, Stat. Probab. Lett. 33 (2) (1997) 201, https://doi.org/10.

1016/S0167-7152(96)00128-9.

[31] A. Bazavov, et al., Freeze-out conditions in heavy ion collisions from QCD

thermodynamics, Phys. Rev. Lett. 109 (2012) 192302, https://doi.org/10.1103/

PhysRevLett.109.192302, arXiv:1208.1220.

[32] A. Bazavov, et al., Curvature of the freeze-out line in heavy ion collisions, Phys.

Rev. D 93 (1) (2016) 014512, https://doi.org/10.1103/PhysRevD.93.014512,

arXiv:1509.05786.

[33] A. Bazavov, et al., Skewness and kurtosis of net baryon-number distributions

at small values of the baryon chemical potential, Phys. Rev. D 96 (7) (2017)

074510, https://doi.org/10.1103/PhysRevD.96.074510, arXiv:1708.04897.

[34] L. Adamczyk, et al., Bulk properties of the medium produced in relativistic

heavy-ion collisions from the beam energy scan program, Phys. Rev. C 96 (4)

(2017) 044904, https://doi.org/10.1103/PhysRevC.96.044904, arXiv:1701.07065.

[35] S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, Is

there still any T c mystery in lattice QCD? Results with physical masses in the

continuum limit III, J. High Energy Phys. 09 (2010) 073, https://doi.org/10.1007/

JHEP09(2010)073, arXiv:1005.3508.

[36] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Curvature of

the chiral pseudocritical line in QCD: continuum extrapolated results, Phys. Rev.

D 92 (5) (2015) 054503, https://doi.org/10.1103/PhysRevD.92.054503, arXiv:

1507.03571.

[37] H.-T. Ding, et al., The chiral phase transition temperature in (2 + 1)-flavor QCD,

arXiv:1903.04801 [hep-lat].

[38] G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, The QCD phase diagram at nonzero

quark density, J. High Energy Phys. 04 (2011) 001, https://doi.org/10.1007/

JHEP04(2011)001, arXiv:1102.1356.

[39] P. Hegde, H.-T. Ding, The curvature of the chiral phase transition line for

small values of μ B , PoS LATTICE2015 (2016) 141, https://doi.org/10.22323/1.

251.0141, arXiv:1511.03378.

[40] P. Cea, L. Cosmai, A. Papa, Critical line of 2 + 1 flavor QCD, Phys. Rev. D 89 (7)

(2014) 074512, https://doi.org/10.1103/PhysRevD.89.074512, arXiv:1403.0821.

[41] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Curvature

of the chiral pseudocritical line in QCD, Phys. Rev. D 90 (11) (2014) 114025,

https://doi.org/10.1103/PhysRevD.90.114025, arXiv:1410.5758.

[42] P. Cea, L. Cosmai, A. Papa, Critical line of 2 + 1 flavor QCD: toward the

continuum limit, Phys. Rev. D 93 (1) (2016) 014507, https://doi.org/10.1103/

PhysRevD.93.014507, arXiv:1508.07599.

[43] R. Bellwied, S. Borsanyi, Z. Fodor, J. Günther, S.D. Katz, C. Ratti, The QCD phase

diagram from analytic continuation, Phys. Lett. B 751 (2015) 559–564, https://

doi.org/10.1016/j.physletb.2015.11.011, arXiv:1507.07510.

[44] B.B. Brandt, G. Endrodi, S. Schmalzbauer, QCD phase diagram for nonzero

isospin-asymmetry, Phys. Rev. D 97 (5) (2018) 054514, https://doi.org/10.1103/

PhysRevD.97.054514, arXiv:1712.08190.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る