リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「IgSF11 regulates osteoclast differentiation through association with the scaffold protein PSD-95」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

IgSF11 regulates osteoclast differentiation through association with the scaffold protein PSD-95

Kim, Hyunsoo 大阪大学

2020.02.10

概要

Osteoclasts are multinucleated, giant cells derived from myeloid progenitors. While receptor activator of NF-κB ligand (RANKL) stimulation is the primary driver of osteoclast differentiation, additional signaling further contributes to osteoclast maturation. Here, we demonstrate that immunoglobulin superfamily member 11 (IgSF11), whose expression increases during osteoclast differentiation, regulates osteoclast differentiation through interaction with postsynaptic density protein 95 (PSD-95), a scaffold protein with multiple protein interaction domains. IgSF11 deficiency in vivo results in impaired osteoclast differentiation and bone resorption but no observed defect in bone formation. Consequently, IgSF11-deficient mice exhibit increased bone mass. Using in vitro osteoclast culture systems, we show that IgSF11 functions through homophilic interactions. Additionally, we demonstrate that impaired osteoclast differentiation in IgSF11-deficient cells is rescued by full-length IgSF11 and that the IgSF11-PSD-95 interaction requires the 75 C-terminal amino acids of IgSF11. Our findings reveal a critical role for IgSF11 during osteoclast differentiation and suggest a role for IgSF11 in a receptor- and signal transduction molecule-containing protein complex.

この論文で使われている画像

参考文献

1. Zaidi, M. Skeletal remodeling in health and disease. Nat. Med. 13, 791–801 (2007).

2. Zelzer, E. & Olsen, B. R. The genetic basis for skeletal diseases. Nature 423, 343–348 (2003).

3. Teitelbaum, S. L. & Ross, F. P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649 (2003).

4. Karsenty, G. & Wagner, E. F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389–406 (2002).

5. Walsh, M. C. et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24, 33–63 (2006).

6. Teitelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

7. Boyle, J. W., Simonet, S. W. & Lacey, L. D. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

8. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

9. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235–1241 (2011).

10. Xiong, J. et al. Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency. Bone 66, 146–154 (2014).

11. Humphrey, M. B. & Nakamura, M. C. A comprehensive review of immunoreceptor regulation of osteoclasts. Clin. Rev. Allergy Immunol. 51, 48–58 (2016).

12. Cavallaro, U. & Christofori, G. Cell adhesion and signalling by cadherins and IgCAMs in cancer. Nat. Rev. Cancer 4, 118–132 (2004).

13. Volkmer, H., Schreiber, J. & Rathjen, F. G. Regulation of adhesion by flexible ectodomains of IgCAMs. Neurochem. Res. 38, 1092–1099 (2013).

14. Suzu, S. et al. Molecular cloning of a novel immunoglobulin superfamily gene preferentially expressed by brain and testis. Biochem. Biophys. Res. Commun. 296, 1215–1221 (2002).

15. Harada, H., Suzu, S., Hayashi, Y. & Okada, S. BT-IgSF, a novel immunoglobulin superfamily protein, functions as a cell adhesion molecule. J. Cell Physiol. 204, 919–926 (2005).

16. Eom, D. S. et al. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11. PLoS Genet. 8, e1002899 (2012).

17. Jang, S. et al. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity. Nat. Neurosci. 19, 84–93 (2016).

18. Higashine, K. et al. Promotion of differentiation in developing mouse cerebellar granule cells by a cell adhesion molecule BT-IgSF. Neurosci. Lett. 686, 87–93 (2018).

19. Pelz, L., Purfurst, B. & Rathjen, F. G. The cell adhesion molecule BT-IgSF is essential for a functional blood-testis barrier and male fertility in mice. J. Biol. Chem. 292, 21490–21503 (2017).

20. Yang, W. et al. Construction of a versatile expression library for all human singlepass transmembrane proteins for receptor pairings by high throughput screening. J. Biotechnol. 260, 18–30 (2017).

21. Wang, J. et al. VSIG-3 as a ligand of VISTA inhibits human T-cell function. Immunology, https://doi.org/10.1111/imm.13001 (2018).

22. Watanabe, T. et al. Identification of immunoglobulin superfamily 11 (IGSF11) as a novel target for cancer immunotherapy of gastrointestinal and hepatocellular carcinomas. Cancer Sci. 96, 498–506 (2005).

23. Schreiber, J., Langhorst, H., Jüttner, R. & Rathjen, F. G. in Cell Adhesion Molecules Advances in Neurobiology Ch. Chapter 2, 21–45 (2014).

24. Kim, H. et al. The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Sci. Rep. 7, 196 (2017).

25. Raschperger, E., Engstrom, U., Pettersson, R. F. & Fuxe, J. CLMP, a novel member of the CTX family and a new component of epithelial tight junctions. J. Biol. Chem. 279, 796–804 (2004).

26. Matthaus, C., Langhorst, H., Schutz, L., Juttner, R. & Rathjen, F. G. Cell-cell communication mediated by the CAR subgroup of immunoglobulin cell adhesion molecules in health and disease. Mol. Cell Neurosci. 81, 32–40 (2017).

27. Matthäus, C., Schreiber, J., Jüttner, R. & Rathjen, F. The Ig CAM CAR is implicated in cardiac development and modulates electrical conduction in the mature heart. J. Cardiovascular Dev. Dis. 1, 111–120 (2014).

28. Yagi, M. et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345–351 (2005).

29. Furuya, M. et al. Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat. Commun. 9, 300 (2018).

30. Dosemeci, A. et al. Composition of the synaptic PSD-95 complex. Mol. Cell Proteom. 6, 1749–1760 (2007).

31. Jang, S., Lee, H. & Kim, E. Synaptic adhesion molecules and excitatory synaptic transmission. Curr. Opin. Neurobiol. 45, 45–50 (2017).

32. Du, C. P. et al. Increased tyrosine phosphorylation of PSD-95 by Src family kinases after brain ischaemia. Biochem. J. 417, 277–285 (2009).

33. Kalia, L. V. & Salter, M. W. Interactions between Src family protein tyrosine kinases and PSD-95. Neuropharmacology 45, 720–728 (2003).

34. Wang, L. et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc. Natl Acad. Sci. USA 111, 14846–14851 (2014).

35. Ceeraz, S. et al. VISTA deficiency accelerates the development of fatal murine lupus nephritis. Arthritis Rheumatol. 69, 814–825 (2017).

36. Matsuo, K. & Irie, N. Osteoclast-osteoblast communication. Arch. Biochem. Biophys. 473, 201–209 (2008).

37. Miyazaki, T., Tokimura, F. & Tanaka, S. A review of denosumab for the treatment of osteoporosis. Patient Prefer Adherence 8, 463–471 (2014).

38. Baron, R., Ferrari, S. & Russell, R. G. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 48, 677–692 (2011).

39. Martin, T. J. Bone biology and anabolic therapies for bone: current status and future prospects. J. Bone Metab. 21, 8–20 (2014).

40. Mashiko, D. et al. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci. Rep. 3, 3355 (2013).

41. Kawamoto, T. & Shimizu, M. A method for preparing 2- to 50-micron-thick freshfrozen sections of large samples and undecalcified hard tissues. Histochem. Cell Biol. 113, 331–339 (2000).

42. Lee, S. H. et al. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403–1409 (2006).

43. Kim, H. et al. Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J. Clin. Investig. 119, 813–825 (2009).

44. Kim, H. et al. Tmem64 modulates calcium signaling during RANKL-mediated osteoclast differentiation. Cell Metab. 17, 249–260 (2013).

参考文献をもっと見る