リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of diminished flow in rabbit lumber arteries on intervertebral disc matrix changes using MRI T2-mapping and histology」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of diminished flow in rabbit lumber arteries on intervertebral disc matrix changes using MRI T2-mapping and histology

Imanishi Takao 三重大学

2020.06.09

概要

Background: Impaired lumbar artery flow has been reported in clinical and epidemiological studies to be associated with low back pain and lumbar disc degeneration. However, it has not been experimentally demonstrated that impaired lumbar artery flow directly induces intervertebral disc (IVD) degeneration by affecting IVD matrix metabolism. The purpose of this study was to evaluate whether ligation of the lumbar artery can affect degenerative changes in the rabbit IVD.
Methods: New Zealand White rabbits (n = 20) were used in this study. Under general anesthesia, the third and fourth lumbar arteries were double-ligated using vascular clips. The blood flow to the L3/L4 disc (cranial disc) was reduced by ligation of the third lumbar artery and that of the L5/L6 disc (caudal disc) by ligation of the fourth lumbar artery. The blood flow to the L4/L5 disc (bilateral disc) was decreased by ligation of both the third and fourth lumbar arteries. The L2/L3 disc was used as the control. Disc height was radiographically monitored biweekly until 12 weeks after surgery. The rabbits were sacrificed at 4, 8, and 12 weeks after surgery and magnetic resonance imaging (MRI) T2-mapping, histology and immunohistochemistry were assessed.
Results: Lumbar artery ligation did not induce significant changes in disc height between control and ischemic discs (cranial, bilateral and caudal discs) during the 12-week experimental period. T2-values of ischemic discs had no significant trend to be lower than those of the control L2/L3 discs. Histologically, Safranin-O staining changed following ligation of corresponding IVD lumbar arteries. Histological grading scores for disc degeneration, which correlated significantly with MRI T2-values, had significant changes after the surgery. Immunohistochemical analysis showed that the ligation of lumbar arteries significantly affected a change in the percentage of HIF-1α immunoreactive cells of ischemia discs compared to that of control discs four weeks after the surgery (p < 0.05).
Conclusions: The MRI and histology results suggest that diminished flow in lumbar arteries induce mild changes in the extracellular matrix metabolism of rabbit IVDs. These matrix changes, however, were not progressive and differed from the degenerative disc changes seen in the process of human IVD degeneration.

参考文献

1. Gore M, Sadosky A, Stacey BR, Tai KS, Leslie D. The burden of chronic low

back pain: clinical comorbidities, treatment patterns, and health care costs

in usual care settings. Spine (Phila Pa 1976). 2012;37(11):E668–77.

2. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance

classification of lumbar intervertebral disc degeneration. Spine (Phila Pa

1976). 2001;26(17):1873–8.

3. Akeda K, Yamada T, Inoue N, Nishimura A, Sudo A. Risk factors for

lumbar intervertebral disc height narrowing: a population-based

longitudinal study in the elderly. BMC Musculoskelet Disord. 2015;

16:344.

4. Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, et al.

Prevalence and pattern of lumbar magnetic resonance imaging changes in

a population study of one thousand forty-three individuals. Spine (Phila Pa

1976). 2009;34(9):934–40.

5. Ikegawa S. The genetics of common degenerative skeletal disorders:

osteoarthritis and degenerative disc disease. Annu Rev Genomics Hum

Genet. 2013;14:245–56.

6. Kepler CK, Ponnappan RK, Tannoury CA, Risbud MV, Anderson DG. The

molecular basis of intervertebral disc degeneration. Spine J. 2013;13(3):318–30.

7. Vo NV, Hartman RA, Patil PR, Risbud MV, Kletsas D, Iatridis JC, et al.

Molecular mechanisms of biological aging in intervertebral discs. J Orthop

Res. 2016;34(8):1289–306.

8. Crock HV, Yoshizawa H. The blood supply of the lumbar vertebral column.

Clin Orthop Relat Res. 1976;115:6–21.

9. Hassler O. The human intervertebral disc. A micro-angiographical study on

its vascular supply at various ages. Acta Orthop Scand. 1969;40(6):765–72.

10. Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine

(Phila Pa 1976). 2004;29(23):2700–9.

11. Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A. Nutrition of the

intervertebral disc: solute transport and metabolism. Connect Tissue Res.

1981;8(2):101–19.

12. Kauppila LI. Atherosclerosis and disc degeneration/low-back pain--a

systematic review. Eur J Vasc Endovasc Surg. 2009;37(6):661–70.

13. Kauppila LI, McAlindon T, Evans S, Wilson PW, Kiel D, Felson DT. Disc

degeneration/back pain and calcification of the abdominal aorta. A 25-year

follow-up study in Framingham. Spine (Phila Pa 1976). 1997;22(14):1642–

1647; discussion 8-9.

14. Kauppila LI, Mikkonen R, Mankinen P, Pelto-Vasenius K, Maenpaa I.

MR aortography and serum cholesterol levels in patients with longterm nonspecific lower back pain. Spine (Phila Pa 1976). 2004;

29(19):2147–52.

15. Kauppila LI, Penttila A, Karhunen PJ, Lalu K, Hannikainen P. Lumbar disc

degeneration and atherosclerosis of the abdominal aorta. Spine (Phila Pa

1976). 1994;19(8):923–9.

16. Kurunlahti M, Kerttula L, Jauhiainen J, Karppinen J, Tervonen O.

Correlation of diffusion in lumbar intervertebral disks with occlusion

of lumbar arteries: a study in adult volunteers. Radiology. 2001;

221(3):779–86.

17. Kurunlahti M, Tervonen O, Vanharanta H, Ilkko E, Suramo I. Association of

atherosclerosis with low back pain and the degree of disc degeneration.

Spine (Phila Pa 1976). 1999;24(20):2080–4.

18. Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, et al.

Osteogenic protein-1 injection into a degenerated disc induces the

restoration of disc height and structural changes in the rabbit anular

puncture model. Spine (Phila Pa 1976). 2006;31(7):742–54.

19. Obata S, Akeda K, Imanishi T, Masuda K, Bae W, Morimoto R, et al. Effect of

autologous platelet-rich plasma-releasate on intervertebral disc

degeneration in the rabbit anular puncture model: a preclinical study.

Arthritis Res Ther. 2012;14(6):R241.

20. Chujo T, An HS, Akeda K, Miyamoto K, Muehleman C, Attawia M, et al. Effects of

growth differentiation factor-5 on the intervertebral disc--in vitro bovine study

and in vivo rabbit disc degeneration model study. Spine (Phila Pa 1976). 2006;

31(25):2909–17.

Page 13 of 14

21. Faul F, Erdfelder E, Lang AG, Buchner A. G*power 3: a flexible statistical power

analysis program for the social, behavioral, and biomedical sciences. Behav Res

Methods. 2007;39(2):175–91.

22. Daly C, Ghosh P, Jenkin G, Oehme D, Goldschlager T. A review of

animal models of intervertebral disc degeneration: pathophysiology,

regeneration, and translation to the clinic. Biomed Res Int. 2016;

2016:5952165.

23. Hou C, Tan G, Zhuang W, Yang J. Establishment of a new animal model for

ischemic lumbar vertebrae. Int J Clin Exp Med. 2015;8(7):10646–56.

24. Marinelli NL, Haughton VM, Anderson PA. T2 relaxation times correlated

with stage of lumbar intervertebral disk degeneration and patient age.

AJNR Am J Neuroradiol. 2010;31(7):1278–82.

25. Perry J, Haughton V, Anderson PA, Wu Y, Fine J, Mistretta C. The value of T2

relaxation times to characterize lumbar intervertebral disks: preliminary

results. AJNR Am J Neuroradiol. 2006;27(2):337–42.

26. Watanabe A, Benneker LM, Boesch C, Watanabe T, Obata T, Anderson SE.

Classification of intervertebral disk degeneration with axial T2 mapping. AJR

Am J Roentgenol. 2007;189(4):936–42.

27. Antoniou J, Pike GB, Steffen T, Baramki H, Poole AR, Aebi M, et al.

Quantitative magnetic resonance imaging in the assessment of

degenerative disc disease. Magn Reson Med. 1998;40(6):900–7.

28. Menezes-Reis R, Salmon CE, Bonugli GP, Mazoroski D, Tamashiro MH,

Savarese LG, et al. Lumbar intervertebral discs T2 relaxometry and T1rho

relaxometry correlation with age in asymptomatic young adults. Quant

Imaging Med Surg. 2016;6(4):402–12.

29. Pandit P, Talbott JF, Pedoia V, Dillon W, Majumdar S. T1rho and T2 -based

characterization of regional variations in intervertebral discs to detect early

degenerative changes. J Orthop Res. 2016;34(8):1373–81.

30. Chokan K, Murakami H, Endo H, Mimata Y, Yamabe D, Tsukimura I, et al.

Evaluation of water retention in lumbar intervertebral disks before and after

exercise stress with T2 mapping. Spine (Phila Pa 1976). 2016;41(7):E430–6.

31. Kiviranta I, Jurvelin J, Tammi M, Saamanen AM, Helminen HJ.

Microspectrophotometric quantitation of glycosaminoglycans in articular

cartilage sections stained with safranin O. Histochemistry. 1985;82(3):249–55.

32. Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the

pericellular matrix of articular cartilage. Matrix Biol. 2014;39:25–32.

33. Thonar E, An H, Masuda K. Compartmentalization of the matrix formed by

nucleus pulposus and annulus fibrosus cells in alginate gel. Biochem Soc

Trans. 2002;30(Pt 6):874–8.

34. Chiba K, Andersson GB, Masuda K, Thonar EJ. Metabolism of the

extracellular matrix formed by intervertebral disc cells cultured in alginate.

Spine (Phila Pa 1976). 1997;22(24):2885–93.

35. Hauselmann HJ, Masuda K, Hunziker EB, Neidhart M, Mok SS, Michel BA, et al.

Adult human chondrocytes cultured in alginate form a matrix similar to native

human articular cartilage. Am J Phys. 1996;271(3 Pt 1):C742–52.

36. Hauselmann HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB,

et al. Phenotypic stability of bovine articular chondrocytes after long-term

culture in alginate beads. J Cell Sci. 1994;107(Pt 1):17–27.

37. Mwale F, Ciobanu I, Giannitsios D, Roughley P, Steffen T, Antoniou J. Effect

of oxygen levels on proteoglycan synthesis by intervertebral disc cells.

Spine (Phila Pa 1976). 2011;36(2):E131–8.

38. Gogate SS, Nasser R, Shapiro IM, Risbud MV. Hypoxic regulation of beta-1,3glucuronyltransferase 1 expression in nucleus pulposus cells of the rat

intervertebral disc: role of hypoxia-inducible factor proteins. Arthritis Rheum.

2011;63(7):1950–60.

39. Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O, et al.

Effect of sex steroids on peak bone density of growing rabbits. Am J Phys.

1988;255(4 Pt 1):E416–21.

40. Kim KW, Lim TH, Kim JG, Jeong ST, Masuda K, An HS. The origin of chondrocytes

in the nucleus pulposus and histologic findings associated with the transition of

a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact

rabbit intervertebral discs. Spine (Phila Pa 1976). 2003;28(10):982–90.

41. MR MC, Seguin CA. Notochord Cells in Intervertebral Disc Development and

Degeneration. J Dev Biol. 2016;4(1).

42. Scott NA, Harris PF, Bagnall KM. A morphological and histological study of

the postnatal development of intervertebral discs in the lumbar spine of

the rabbit. J Anat. 1980;130(Pt 1):75–81.

43. Martin JT, Collins CM, Ikuta K, Mauck RL, Elliott DM, Zhang Y, et al.

Population average T2 MRI maps reveal quantitative regional

transformations in the degenerating rabbit intervertebral disc that vary by

lumbar level. J Orthop Res. 2015;33(1):140–8.

Imanishi et al. BMC Musculoskeletal Disorders

(2019) 20:347

Page 14 of 14

44. Baron P, Deckers R, Knuttel FM, Bartels LW. T1 and T2 temperature

dependence of female human breast adipose tissue at 1.5 T: groundwork

for monitoring thermal therapies in the breast. NMR Biomed. 2015;28(11):

1463–70.

45. Zech WD, Schwendener N, Persson A, Warntjes MJ, Jackowski C.

Temperature dependence of postmortem MR quantification for soft tissue

discrimination. Eur Radiol. 2015;25(8):2381–9.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Readytosubmityourresearch? ChooseBMCandb

tfrom:

• f

,convenientonl

esubmission

• thoroughpeerreviewbyexperiencedr

si

nyourf

• r

dp

nonacceptance

• supportf

rr

hd

,i

gl

eandcomplexdatat

• g

dOpenAccesswhichf

swiderc

nandi

dc

• maximumv

yf

ryourr

:overlOOMwebsiteviewsperyear

AtBMC,r

hi

salwaysi

np

Learnmorebiomedcentral.com/submissions

BMC

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る