リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Clinical and Radiological Characteristics of Cervical Spondylotic Myelopathy in Young Adults: A Retrospective Case Series of Patients under Age 30」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Clinical and Radiological Characteristics of Cervical Spondylotic Myelopathy in Young Adults: A Retrospective Case Series of Patients under Age 30

Terashima, Yoshiki Yurube, Takashi Sumi, Masatoshi Kanemura, Aritetsu Uno, Koki Kakutani, Kenichiro 神戸大学

2023.03

概要

Background and Objectives: Cervical spondylotic myelopathy (CSM) is a degenerative disease and occurs more frequently with age. In fact, the development of non-herniated CSM under age 30 is uncommon. Therefore, a retrospective case series was designed to clarify clinical and radiological characteristics of young adult patients with CSM under age 30. Materials and Methods: A total of seven patients, all men, with non-herniated, degenerative CSM under age 30 were retrieved from the medical records of 2598 hospitalized CSM patients (0.27%). Patient demographics and backgrounds were assessed. The sagittal alignment, congenital canal stenosis, dynamic canal stenosis, and vertebral slips in the cervical spine were radiographically evaluated. The presence of degenerative discs, intramedullary high-signal intensity lesions, and sagittal spinal cord compression on T2-weighted magnetic resonance images (MRIs) and axial spinal cord deformity on T1-weighted MRIs was identified. Results: All patients (100.0%) had relatively high daily sports activities and/or jobs requiring frequent neck extension. Cervical spine radiographs revealed the sagittal alignment as the “reverse-sigmoid” type in 57.1% of patients and “straight” type in 28.6%. All patients (100.0%) presented congenital cervical stenosis with the canal diameter ≤12 mm and/or Torg–Pavlov ratio <0.80. Furthermore, all patients (100.0%) developed dynamic stenosis with the canal diameter ≤12 mm and/or posterior vertebral slip ≥2 mm at the neurologically responsible segment in full-extension position. In MRI examination, all discs at the neurologically responsible level (100.0%) were degenerative. Intramedullary abnormal intensity lesions were detected in 85.7% of patients, which were all at the neurologically responsible disc level. Conclusions: Patients with non-herniated, degenerative CSM under age 30 are rare but more common in men with mild sagittal “reverse-sigmoid” or “straight” deformity and congenital canal stenosis. Relatively high daily activities, accumulating neck stress, can cause an early development of intervertebral disc degeneration and dynamic canal stenosis, leading to CSM in young adults.

この論文で使われている画像

関連論文

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Law, M.D., Jr.; Bernhardt, M.; White, A.A., 3rd. Evaluation and management of cervical spondylotic myelopathy.

Instr. Course Lect. 1995, 44, 99–110. [PubMed]

Bohlman, H.H. Cervical spondylosis and myelopathy. Instr. Course Lect. 1995, 44, 81–97. [PubMed]

Murone, I. The importance of the sagittal diameters of the cervical spinal canal in relation to spondylosis and myelopathy. J. Bone

Joint Surg. Br. 1974, 56, 30–36. [PubMed]

Kataoka, O.; Kurihara, A. The role of dynamic canal stenosis in cervical spondylotic myelopathy. J. West Pac. Orthop. Assoc. 1977,

14, 1–22.

Bernhardt, M.; Hynes, R.A.; Blume, H.W.; White, A.A., 3rd. Cervical spondylotic myelopathy. J. Bone Jt. Surg. Am. 1993, 75,

119–128. [CrossRef]

Klineberg, E. Cervical spondylotic myelopathy: A review of the evidence. Orthop. Clin. N. Am. 2010, 41, 193–202. [CrossRef]

Sumi, M.; Miyamoto, H.; Suzuki, T.; Kaneyama, S.; Kanatani, T.; Uno, K. Prospective cohort study of mild cervical spondylotic

myelopathy without surgical treatment. J. Neurosurg. Spine 2012, 16, 8–14. [CrossRef]

Amenta, P.S.; Ghobrial, G.M.; Krespan, K.; Nguyen, P.; Ali, M.; Harrop, J.S. Cervical spondylotic myelopathy in the young adult:

A review of the literature and clinical diagnostic criteria in an uncommon demographic. Clin. Neurol. Neurosurg. 2014, 120, 68–72.

[CrossRef]

Bednarik, J.; Kadanka, Z.; Dusek, L.; Novotny, O.; Surelova, D.; Urbanek, I.; Prokes, B. Presymptomatic spondylotic cervical cord

compression. Spine 2004, 29, 2260–2269. [CrossRef]

Association, J.O. Scoring system (17-2) for cervical myelopathy. J. Jpn. Orthop. Assoc. 1994, 68, 490–503.

Yurube, T.; Sumi, M.; Nishida, K.; Takabatake, M.; Kohyama, K.; Matsubara, T.; Ozaki, T.; Maeno, K.; Kakutani, K.; Zhang, Z.;

et al. Progression of cervical spine instabilities in rheumatoid arthritis: A prospective cohort study of outpatients over 5 years.

Spine 2011, 36, 647–653. [CrossRef]

Yurube, T.; Sumi, M.; Nishida, K.; Miyamoto, H.; Kohyama, K.; Matsubara, T.; Miura, Y.; Sugiyama, D.; Doita, M.; Kobe Spine, C.

Incidence and aggravation of cervical spine instabilities in rheumatoid arthritis: A prospective minimum 5-year follow-up study

of patients initially without cervical involvement. Spine 2012, 37, 2136–2144. [CrossRef]

Yurube, T.; Sumi, M.; Nishida, K.; Miyamoto, H.; Kohyama, K.; Matsubara, T.; Miura, Y.; Hirata, H.; Sugiyama, D.; Doita, M.

Accelerated development of cervical spine instabilities in rheumatoid arthritis: A prospective minimum 5-year cohort study.

PLoS ONE 2014, 9, e88970. [CrossRef]

Terashima, Y.; Yurube, T.; Hirata, H.; Sugiyama, D.; Sumi, M.; Hyogo Organization of Spinal, D. Predictive Risk Factors of Cervical

Spine Instabilities in Rheumatoid Arthritis: A Prospective Multicenter Over 10-Year Cohort Study. Spine 2017, 42, 556–564.

[CrossRef]

Matsumoto, M.; Fujimura, Y.; Suzuki, N.; Toyama, Y.; Shiga, H. Cervical curvature in acute whiplash injuries: Prospective

comparative study with asymptomatic subjects. Injury 1998, 29, 775–778. [CrossRef]

Torg, J.S.; Pavlov, H.; Genuario, S.E.; Sennett, B.; Wisneski, R.J.; Robie, B.H.; Jahre, C. Neurapraxia of the cervical spinal cord with

transient quadriplegia. J. Bone Jt. Surg. Am. 1986, 68, 1354–1370. [CrossRef]

Pavlov, H.; Torg, J.S.; Robie, B.; Jahre, C. Cervical spinal stenosis: Determination with vertebral body ratio method. Radiology 1987,

164, 771–775. [CrossRef]

Pfirrmann, C.W.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic resonance classification of lumbar intervertebral disc

degeneration. Spine 2001, 26, 1873–1878. [CrossRef]

Takahashi, M.; Yamashita, Y.; Sakamoto, Y.; Kojima, R. Chronic cervical cord compression: Clinical significance of increased signal

intensity on MR images. Radiology 1989, 173, 219–224. [CrossRef]

Matsumoto, M.; Toyama, Y.; Ishikawa, M.; Chiba, K.; Suzuki, N.; Fujimura, Y. Increased signal intensity of the spinal cord on

magnetic resonance images in cervical compressive myelopathy. Does it predict the outcome of conservative treatment? Spine

2000, 25, 677–682. [CrossRef]

Mehalic, T.F.; Pezzuti, R.T.; Applebaum, B.I. Magnetic resonance imaging and cervical spondylotic myelopathy. Neurosurgery

1990, 26, 217–226; discussion 217–226. [CrossRef] [PubMed]

Morio, Y.; Teshima, R.; Nagashima, H.; Nawata, K.; Yamasaki, D.; Nanjo, Y. Correlation between operative outcomes of cervical

compression myelopathy and mri of the spinal cord. Spine 2001, 26, 1238–1245. [CrossRef] [PubMed]

Lenehan, B.; Boran, S.; Street, J.; Higgins, T.; McCormack, D.; Poynton, A.R. Demographics of acute admissions to a National

Spinal Injuries Unit. Eur. Spine J. 2009, 18, 938–942. [CrossRef] [PubMed]

Scher, A.T. Rugby injuries to the cervical spine and spinal cord: A 10-year review. Clin. Sports Med. 1998, 17, 195–206. [CrossRef]

Kamitani, T.; Nimura, Y.; Nagahiro, S.; Miyazaki, S.; Tomatsu, T. Catastrophic head and neck injuries in judo players in Japan

from 2003 to 2010. Am. J. Sports Med. 2013, 41, 1915–1921. [CrossRef]

Hinck, V.C.; Sachdev, N.S. Developmental stenosis of the cervical spinal canal. Brain 1966, 89, 27–36. [CrossRef]

Yue, W.M.; Tan, S.B.; Tan, M.H.; Koh, D.C.; Tan, C.T. The Torg–Pavlov ratio in cervical spondylotic myelopathy: A comparative

study between patients with cervical spondylotic myelopathy and a nonspondylotic, nonmyelopathic population. Spine 2001, 26,

1760–1764. [CrossRef]

Nakashima, H.; Yukawa, Y.; Suda, K.; Yamagata, M.; Ueta, T.; Kato, F. Narrow cervical canal in 1211 asymptomatic healthy

subjects: The relationship with spinal cord compression on MRI. Eur. Spine J. 2016, 25, 2149–2154. [CrossRef]

Medicina 2023, 59, 539

29.

30.

31.

32.

33.

34.

35.

36.

12 of 12

Penning, L. Some aspects of plain radiography of the cervical spine in chronic myelopathy. Neurology 1962, 12, 513–519. [CrossRef]

Kawaida, H.; Sakou, T.; Morizono, Y.; Yoshikuni, N. Magnetic resonance imaging of upper cervical disorders in rheumatoid

arthritis. Spine 1989, 14, 1144–1148. [CrossRef]

Boden, S.D.; Dodge, L.D.; Bohlman, H.H.; Rechtine, G.R. Rheumatoid arthritis of the cervical spine. A long-term analysis with

predictors of paralysis and recovery. J. Bone Jt. Surg. Am. 1993, 75, 1282–1297. [CrossRef]

Greenberg, A.D. Atlanto-axial dislocations. Brain 1968, 91, 655–684. [CrossRef]

Oda, T.; Yonenobu, K.; Fujimura, Y.; Ishii, Y.; Nakahara, S.; Matsunaga, S.; Shimizu, T.; Matsumoto, M. Diagnostic validity of space

available for the spinal cord at C1 level for cervical myelopathy in patients with rheumatoid arthritis. Spine 2009, 34, 1395–1398.

[CrossRef]

Nakashima, H.; Yukawa, Y.; Suda, K.; Yamagata, M.; Ueta, T.; Kato, F. Cervical Disc Protrusion Correlates With the Severity of

Cervical Disc Degeneration: A Cross-Sectional Study of 1211 Relatively Healthy Volunteers. Spine 2015, 40, E774–E779. [CrossRef]

Matsuda, Y.; Miyazaki, K.; Tada, K.; Yasuda, A.; Nakayama, T.; Murakami, H.; Matsuo, M. Increased MR signal intensity due to

cervical myelopathy. Analysis of 29 surgical cases. J. Neurosurg. 1991, 74, 887–892. [CrossRef]

Harrison, D.E.; Harrison, D.D.; Cailliet, R.; Troyanovich, S.J.; Janik, T.J.; Holland, B. Cobb method or Harrison posterior tangent

method: Which to choose for lateral cervical radiographic analysis. Spine 2000, 25, 2072–2078. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る