リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of a reversible regulatory system for gene expression in the cyanobacterium Synechocystis sp. PCC 6803 by quorum-sensing molecules N-Acyl-homoserine lactones (AHLs)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of a reversible regulatory system for gene expression in the cyanobacterium Synechocystis sp. PCC 6803 by quorum-sensing molecules N-Acyl-homoserine lactones (AHLs)

MUHAMMAD, Junaid 筑波大学 DOI:10.15068/0002000823

2021.08.02

概要

The two-component system, involving a histidine kinase and a response regulator, is a common mechanism in microorganisms to sense and adapt to environmental changes. In response to a cognate environmental stimulus, response regulator proteins can alter the gene expression. The transcriptional regulation in microalgae is an important approach to control the response and production of useful target compounds. The transcriptional regulation in microalgae is important to control the response and production of useful target compounds. However, in most cases, induction of gene expression by heavy metal ions or chemical inducers makes it difficult to remove them from the medium, and transcription is limited to only once per culture period. Hence, the development of a reversible gene regulatory system is important to produce useful, targeted compounds without affecting the cellular growth profiles. Therefore, in this study development of a reversible gene regulation system was focused by fusion of quorum-sensing (QS) sensors, LuxN and VanN obtained from Vibrio harveyi and Vibrio anguillarum, respectively, with the kinase domain of SphS, a phosphate- deficiency sensor from the cyanobacterium Synechocystis sp. PCC 6803. The response of developed chimeric sensors, LuxN_SphS and VanN_SphS, after expressing in Synechocystis cells to the application of various N-acyl-homoserine lactones (AHLs) was assessed by measuring the alkaline phosphatase (AP) activity. The addition of OHC6-HSL resulted in repression of AP activity in VanN_SphS chimeric sensor, while the introduction of AHL-degradation enzyme, Aii20J from a marine bacterium, degraded the OHC6-HSL, and AP was recovered to its original level. The use of AHLs for transcriptional regulation in Synechocystis sp. PCC6803 was demonstrated for the first time in this study, which can be utilized to produce useful, targeted compounds in the cyanobacterium in the future.

この論文で使われている画像

参考文献

Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology.J Appl Microbiol 106:1–12. https://doi.org/10.1111/j.1365-2672.2008.03918.x

Aiba H, Nagaya M, Mizuno T (1993) Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal transduction protein families: implication in the adaptive response to phosphate limitation. Mol Microbiol 8:81–91. https://doi.org/10.1111/j.1365-2958.1993.tb01205.x

Alves R, Savageau MA (2003) Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: Differences in molecular structure and physiological function. Mol Microbiol 48:25–51. https://doi.org/10.1046/j.1365-2958.2003.03344.x

Angermayr SA, Van Der Woude AD, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf KJ (2014) Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol Biofuels 7:1–15. https://doi.org/10.1186/1754-6834-7-99

Asada R, Shiraiwa Y, Suzuki I (2019) A novel cell lysis system induced by phosphate deficiency in the cyanobacterium Synechocystis sp. PCC 6803. J Appl Phycol 31:1069– 1076. https://doi.org/10.1007/s10811-018-1652-6

Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180. https://doi.org/10.1038/nbt.1586

Barrett JF, Goldschmidt RM, Lawrence LE, Foleno B, Chen R, Demers JP, Johnson S, Kanojia R, Fernandez J, Bernstein J, Licata L, Donetz A, Huang S, Hlasta DJ, Macielag MJ, Ohemeng K, Frechette R, Frosco MB, Klaubert DH, Whiteley JM, Wang L, Hoch JA (1998) Antibacterial agents that inhibit two-component signal transduction systems. Proc Natl Acad Sci USA 95:5317–5322. https://doi.org/10.1073/pnas.95.9.5317

Barrett JF, Hoch JA (1998) Two-component signal transduction as a target for microbial anti- infective therapy. Anti microb Agents Chemother 42:1529–1536. https://doi.org/10.1128/aac.42.7.1529

Bassler BL, Losick R (2006) Bacterially Speaking. Cell 125:237–246. https://doi.org/10.1016/j.cell.2006.04.001

Bhate MAP, Molnar KAS, Goulian M, Degrado WF (2015) Signal Transduction in Histidine Kinases: Insights from New Structures. Structure 23:981–994. https://doi.org/10.1016/j.str.2015.04.002

Bonneau R (2008) Dissecting the Quorum-Sensing Receptor LuxN. Cell 134:390–391. https://doi.org/10.1016/j.cell.2008.07.028

Bretl DJ, Demetriadou C, Zahrt TC (2011) Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis. Microbiol Mol Biol Rev 75:566–582. https://doi.org/10.1128/mmbr.05004-11

Buchholtz C, Nielsen KF, Milton DL, Larsen JL, Gram L (2006) Profiling of acylated homoserine lactones of Vibrio anguillarum in vitro and in vivo: Influence of growth conditions and serotype. Syst Appl Microbiol 29:433–445. https://doi.org/10.1016/j.syapm.2005.12.007

Cao JG, Meighen EA (1989) Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J Biol Chem 264:21670–21676

Deng M De, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528. https://doi.org/10.1128/aem.65.2.523-528.1999

Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production.Energy Environ Sci 2:857–864. https://doi.org/10.1039/B811937F

Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum- sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817. https://doi.org/10.1038/35081101

Egger LA, Inouye M (1997) Purification and Characterization of the Periplasmic Domain of EnvZ Osmosensor in Escherichia coli. Biochem Biophys Res Commun 231:68–72. https://doi.org/https://doi.org/10.1006/bbrc.1996.6007

Fan X, Liang M, Wang L, Chen R, Li H, Liu X (2017) Aii810, a novel cold-adapted N-acyl homoserine lactonase discovered in a metagenome, can strongly attenuate Pseudomonas aeruginosa virulence factors and biofilm formation. Front Microbiol 8:1–11. https://doi.org/10.3389/fmicb.2017.01950

Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of Gene Expression by Cell-to-Cell Communication: Acyl-Homoserine Lactone Quorum Sensing. Annu Rev Genet 35:439–468. https://doi.org/10.1146/annurev.genet.35.102401.090913

Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: The LuxR-LuxI family of cell density- responsive transcriptional regulators. J Bacteriol 176:269–275. https://doi.org/10.1128/jb.176.2.269-275.1994

Freeman JA, Lilley BN, Bassler BL (2000) A genetic analysis of the functions of LuxN: A two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol Microbiol 35:139–149. https://doi.org/10.1046/j.1365-2958.2000.01684.x

Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum Sensing in Gram-Negative Bacteria: Small-Molecule Modulation of AHL and AI-2 Quorum Sensing Pathways. Chem Rev 111:28–67. https://doi.org/10.1021/cr100109t

Ganesh I, Ravikumar S, Lee SH, Park SJ, Hong SH (2013) Engineered fumarate sensing Escherichia coli based on novel chimeric two-component system. J Biotechnol 168:560–566. https://doi.org/10.1016/j.jbiotec.2013.09.003

Geerts D, Bovy A, De Vrieze G, Borrias M, Weisbeek P (1995) Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942. Microbiology 141:831–841. https://doi.org/10.1099/13500872-141-4-831

Grillo JF, Gibson J (1979) Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus. J Bacteriol 140:508-517.

Grimshaw CE, Huang S, Hanstein CG, Strauch MA, Burbulys D, Wang L, Hoch JA, Whiteley JM (1998) Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 37:1365–1375. https://doi.org/10.1021/bi971917m

Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR (2012) Ethylene Synthesis and Regulated Expression of Recombinant Protein in Synechocystis sp. PCC 6803. PLoS One 7. https://doi.org/10.1371/journal.pone.0050470

Henke JM, Bassler BL (2004) Three Parallel Quorum-Sensing Systems Regulate Gene Expression in Vibrio harveyi. J Bacteriol 186:6902–6914. https://doi.org/10.1128/JB.186.20.6902

Hirani TA, Suzuki I, Murata N, Hayashi H, Eaton-Rye JJ (2001) Characterization of a two- component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803. Plant Mol Biol 45:133–144. https://doi.org/10.1023/A:1006425214168

Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170. https://doi.org/10.1016/S1369-5274(00)00070-9

Holm S (1979) A Simple Sequentially Rejective Multiple Test Procedure. Scand J Stat Scand J Stat 6:65–70.

Hori M, Oka S, Sugie Y, Ohtsuka H, Aiba H (2017) Construction of a photo-responsive chimeric histidine kinase in Escherichia coli. J Gen Appl Microbiol 63:44–50. https://doi.org/10.2323/jgam.2016.07.005

Hsiao HY, He Q, Van Waasbergen LG, Grossman AR (2004) Control of photosynthetic and high-light-responsive genes by the histidine kinase DspA: Negative and positive regulation and interactions between signal transduction pathways. J Bacteriol 186:3882–3888. https://doi.org/10.1128/JB.186.12.3882-3888.2004

Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38:2577–2593. https://doi.org/10.1093/nar/gkq164

Huang J, Shi Y, Zeng G, Gu Y, Chen G, Shi L, Hu Y, Tang B, Zhou J (2016) Acyl- homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere 157:137–51. https://doi.10.1016/j.chemosphere.2016.05.032

Inaba Y, Morioka R, Junaid M, Shiraiwa Y, Suzuki I (2018) Development of engineered sensor perceiving gaseous toluene signal in the cyanobacterium Synechocystis sp. PCC 6803. J Appl Phycol 30:71–78. https://doi.org/10.1007/s10811-017-1277-1

Ishizuka T, Shimada T, Okajima K, Yoshihara S, Ochiai Y, Katayama M, Ikeuchi M (2006) Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 47:1251–1261. https://doi.org/10.1093/pcp/pcj095

Jung K, Odenbach T, Timmen M (2007) The quorum-sensing hybrid histidine kinase LuxN of Vibrio harveyi contains a periplasmically located N terminus. J Bacteriol 189:2945– 2948. https://doi.org/10.1128/JB.01723-06

Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214.

Kato A., Groisman E.A. (2008) The PhoQ/PhoP Regulatory Network of Salmonella enterica. In: Utsumi R. (eds) Bacterial Signal Transduction: Networks and Drug Targets. Advances in Experimental Medicine and Biology, vol 631. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78885-2_2

Kimura S, Shiraiwa Y, Suzuki I (2009) Function of the N-terminal region of the phosphate- sensing histidine kinase, SphS, in Synechocystis sp. PCC 6803. Microbiology 155:2256–2264. https://doi.org/10.1099/mic.0.028514-0

Kirby JR (2009) Chemotaxis-Like Regulatory Systems: Unique Roles in Diverse Bacteria. Annu Rev Microbiol 63:45–59. https://doi.org/10.1146/annurev.micro.091208.073221

Kobayashi S, Nakajima M, Asano R, Ferreira EA, Abe K, Tamagnini P, Atsumi S, Sode K (2019) Application of an engineered chromatic acclimation sensor for red-light- regulated gene expression in cyanobacteria. Algal Res 44:101691. https://doi.org/10.1016/j.algal.2019.101691

Kotajima T, Shiraiwa Y, Suzuki I (2014) Functional analysis of the N-terminal region of an essential histidine kinase, Hik2, in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 351:88–94. https://doi.org/10.1111/1574-6968.12346

Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni M-E, Ramos JL (2010) Bacterial Sensor Kinases: Diversity in the Recognition of Environmental Signals. Annu Rev Microbiol 64:539–559 . https://doi.org/10.1146/annurev.micro.112408.134054

Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real- Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408. https://doi.org/10.1006/METH.2001.1262

Ma AT, Schmidt CM, Golden JW (2014) Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ

Microbiol 80:6704–6713. https://doi.org/10.1128/AEM.01697-14

Maeda Y, Ito Y, Honda T, Yoshino T, Tanaka T (2014) Inducible expression system for the marine cyanobacterium Synechococcus sp. strain NKBG 15041c. Int J Hydrogen Energy 39:19382–19388.https://doi.org/https://doi.org/10.1016/j.ijhydene.2014.06.170

Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 100:9061–9066. https://doi.org/10.1073/pnas.1532302100

Mayer C, Romero M, Muras A, Otero A (2015) Aii20J, A wide-spectrum thermostable N- acylhomoserine lactonase from the marine bacterium Tenacibaculum sp. 20J, can quench AHL-mediated acid resistance in Escherichia coli. Appl Microbiol Biotechnol 99:9523–9539. https://doi.org/10.1007/s00253-015-6741-8

McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711. https://doi.org/10.1099/00221287-143-12-3703

Milton DL, Chalker VJ, Kirke D, Hardman A, Cámara M, Williams P (2001) The luxM homologue vanM from Vibrio anguillarum directs the synthesis of N-(3- hydroxyhexanoyl) homoserine lactone and N-hexanoylhomoserine lactone. J Bacteriol 183:3537–3547. https://doi.org/10.1128/JB.183.12.3537-3547.2001

Mironov KS, Sidorov RA, Trofimova MS, Bedbenov VS, Tsydendambaev VD, Allakhverdiev SI, Los DA (2012) Light-dependent cold-induced fatty acid unsaturation,changes in membrane fluidity, and alterations in gene expression in Synechocystis. Biochim Biophys Acta-Bioenerg 1817:1352–1359. https://doi.org/10.1016/j.bbabio.2011.12.011

Möglich A, Ayers RA, Moffat K (2009) Design and signaling mechanism of light-regulated histidine kinases. J Mol Biol 385:1433–1444. https://doi.org/https://doi.org/10.1016/j.jmb.2008.12.017

Moore LR, Ostrowski M, Scanlan DJ, Feren K, Sweetsir T (2005) Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria. Aquat Microb Ecol 39:257–269

Nagaya M, Aiba H, Mizuno T (1994) The sphR product, a two-component system response regulator protein, regulates phosphate assimilation in Synechococcus sp. strain PCC 7942 by binding to two sites upstream from the phoA promoter. J Bacteriol 176:2210– 2215. https://doi.org/10.1128/jb.176.8.2210-2215.1994

Nakahira Y, Ogawa A, Asano H, Oyama T, Tozawa Y (2013) Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol 54:1724–1735. https://doi.org/10.1093/pcp/pct115

Nakajima M, Ferri S, Rögner M, Sode K (2016) Construction of a miniaturized chromatic acclimation sensor from cyanobacteria with reversed response to a light signal. Sci Rep 6:4–11. https://doi.org/10.1038/srep37595

Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci USA 110:1249–1254. https://doi.org/10.1073/pnas.1213024110

Osanai T, Shirai T, Iijima H, Nakaya Y, Okamoto M, Kondo A, Hirai MY (2015) Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium. Front Microbiol 6:1–10. https://doi.org/10.3389/fmicb.2015.01064

Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588. https://doi.org/10.1038/nrmicro.2016.89

Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210. https://doi.org/10.1128/jb.181.4.1203-1210.1999

Ray JM, Bhaya D, Block MA, Grossman AR (1991) Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942. J Bacteriol 173:4297–4309. https://doi.org/10.1128/jb.173.14.4297-4309.1991

Romero M, Mayer C, Muras A, Otero A (2015) Silencing bacterial communication through enzymatic quorum-sensing inhibitors. In: Quorum Sensing vs Quorum quenching: a battle with no end in sight. Kalia, V.C. (ed). Springer India. 219–236.

Romero M, Muras A, Mayer C, Buján N, Magariños B, Otero A (2014) In vitro quenching of fish pathogen Edwardsiella tarda AHL production using marine bacterium Tenacibaculum sp. strain 20J cell extracts. Dis Aquat Organ 108:217–225. https://doi.org/10.3354/dao02697

Romero M, Avendaño-Herrera R, Magariños B, Cámara M, Otero A (2010) Acyl homoserine lactone production and degradation by the fish pathogen Tenacibaculum maritimum, a member of the Cytophaga-Flavobacterium-Bacteroides (CFB) group. FEMS Microbiol Lett 304:131–139. https://doi.org/10.1111/j.1574-6968.2009.01889.x

Saita E, Abriata LA, Tsai YT, Trajtenberg F, Lemmin T, Buschiazzo A, Dal Peraro M, de Mendoza D, Albanesi D (2015) A coiled coil switch mediates cold sensing by the thermosensory protein DesK. Mol Microbiol 98:258–271. https://doi.org/10.1111/mmi.13118

Savakis PE, Angermayr SA, Hellingwerf KJ (2013) Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria. Metab Eng 20:121–130. https://doi.org/https://doi.org/10.1016/j.ymben.2013.09.008

Shimura Y, Shiraiwa Y, Suzuki I (2012) Characterization of the subdomains in the N- terminal region of histidine kinase Hik33 in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 53:1255–1266. https://doi.org/10.1093/pcp/pcs068

Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205.

Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215. https://doi.org/10.1146/annurev.biochem.69.1.183

Sugie Y, Hori M, Oka S, Ohtsuka H, Aiba H (2016) Reconstruction of a chromatic response system in Escherichia coli. J Gen Appl Microbiol 62:140–143. https://doi.org/10.2323/jgam.2016.01.006

Suzuki S, Ferjani A, Suzuki I, Murata N (2004) The SphS-SphR Two Component System is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis. J Biol Chem 279:13234–13240. https://doi.org/10.1074/jbc.M313358200

Swem LR, Swem DL, Wingreen NS, Bassler BL (2008) Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134:461–473. https://doi.org/10.1016/j.cell.2008.06.023

Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100:14549–14554. https://doi.org/10.1073/pnas.1934514100

Tandeau de Marsac N, Houmard J (1988) Complementary chromatic adaptation: Physiological conditions and action spectra. Methods Enzymol 167:318–328. https://doi.org/10.1016/0076-6879(88)67037-6

Tang K, Su Y, Brackman G, Cui F, Zhang Y, Shi X, Coenye T, Zhang XH (2015) MomL, a novel marine-derived N-Acyl homoserine lactonase from Muricauda olearia. Appl Environ Microbiol 81:774–782. https://doi.org/10.1128/AEM.02805-14

Timmen M, Bassler BL, Jung K (2006) AI-1 influences the kinase activity but not the phosphatase activity of LuxN of Vibrio harveyi. J Biol Chem 281:24398–24404. https://doi.org/10.1074/jbc.M604108200

Torres M, Uroz S, Salto R, Fauchery L, Quesada E, Llamas I (2017) HqiA, a novel quorum- quenching enzyme which expands the AHL lactonase family. Sci Rep 7:1–15. https://doi.org/10.1038/s41598-017-01176-7

Ulrich RL (2004) Quorum Quenching: Enzymatic disruption of N-Acyhomoserine lactone- mediated bacterial communication in Burkholderia thailandensis. 70:6173–6180. https://doi.org/10.1128/AEM.70.10.6173

Wada H, Murata N (1989) Synechocystis PCC6803 Mutants Defective in Desaturation of Fatty Acids. Plant Cell Physiol 30:971–978. https://doi.org/10.1093/oxfordjournals.pcp.a077842

Waters CM, Bassler BL (2005) QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annu Rev Cell Dev Biol 21:319–346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001

Williams JGK (1988) Construction of Specific Mutations in Photosystem II Photosynthetic Reaction Center by Genetic Engineering Methods in Synechocystis 6803. Methods Enzymol 167:766–778. https://doi.org/10.1016/0076-6879(88)67088-1

Yoshida T, Phadtare S, Inouye M (2007) The design and development of Tar-EnvZ chimeric receptors. Methods Enzymol 423:166–183.https://doi.org/10.1016/S0076-6879(07)23007-1

Zschiedrich CP, Keidel V, Szurmant H (2016) Molecular mechanisms of two-component signal transduction. J Mol Biol 428:3752–3775. https://doi.org/10.1016/j.jmb.2016.08.003

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る