リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mechanisms of anti-inflammatory and anticancer effects of biologically active components of cinobufacini」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mechanisms of anti-inflammatory and anticancer effects of biologically active components of cinobufacini

张 瑜 東京薬科大学

2021.07.14

概要

Cinobufacini(also known as Huachansu), a well-known traditionalChinese medicine thatcomes fromthe dried skin of Bufo bufo gargarizansCantor, has long been successfully used in clinic as anti-inflammatory and anticancer agents in China. Specifically, indolealkylamines (IAAs) andbufadienolides aretwo primarybiologically active chemical components in this Chinesepatentmedicine. IAAs has been shown to have good anti-inflammatory activity in LPS stimulated zebrafish coursed by LPS. The mechanism underlying its anti-inflammatory activity is worthy of further study. Bufadienolides are another kind of importanteffective constituents of toad skin, which has been used to treat patients with various types of cancers such in China. Specifically, active bufadienolide compounds such as hellebrigenin (Helle) and arenobufagin (Areno) exhibitedbetter cytocidal effects againsta widespectrumof cancer celllines than other components.However, the cytocidaleffects of Helle and Areno againstbreastcancer cells as wellas the underlying molecular mechanisms remain largely unexplored.

この論文で使われている画像

参考文献

1. Cao S, Cripps A, Ming Q W. New strategies for cancer gene therapy: Progress and opportunities. Clin Exp Pharmacol P, 37, 108-114 (2010).

2. Rocha A, Lopes R M, Schwartsmann G. Natural products in anticancer therapy. Curr Opin Pharmacol, 1, 364-369 (2001).

3. Yadav V R, Prasad S, Sung B, Kannappan R, Aggarwal B B. Targeting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer. Toxins, 2, 2428-2466 (2010).

4. Ji Q, Tan C K, Hashimi S M, Zulfiker A, Ming Q W. Toad Glandular Secretions and Skin Extractions as Anti-Inflammatory and Anticancer Agents. Evid-based Compl Alt, 2014, 312684 (2014).

5. Meng Z, Yang P, Shen Y, Bei W, Ying Z, Ge Y, Newman R A, Cohen L, Liu L, Thornton B. Pilot study of huachansu in patients with hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. Cancer, 115, 5309-5318 (2010).

6. Zhang X, Yuan Y, Xi Y, Xu X, Guo Q, Zheng H, Hua B. Cinobufacini Injection Improves the Efficacy of Chemotherapy on Advanced Stage Gastric Cancer: A Systemic Review and Meta-Analysis. Evid-based Compl Alt, 2018, 7362340 (2018).

7. Jiang Y, Liu L S, Shen L P, Han Z F, Jian H, Liu J X, Xu L, Li H G, Tian J H, Mao Z J. Traditional Chinese Medicine treatment as maintenance therapy in advanced non-small-cell lung cancer: A randomized controlled trial. Complement Ther Med, 24, 55-62 (2016).

8. Zhao H, Xu W, Wang H, Bo G, Jian Y, Nan S, Bian B. Qualitative and quantitative analysis of cinobufacini injection using rapid separation liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry and HPLC‐photodiode array detection, a feasible strategy for the quality control of Chinese medicine injections. J Sep Sci, 36, 492- 502 (2013).

9. Hain E G, Sparenberg M, Rasińska J, Klein C, Akyüz L, Steiner B. Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti- inflammatory effects following MPTP-induced dopamine depletion. J Neuroinflamm, 15, 162 (2018).

10. Zhang Y, Yuan B, Takagi N, Wang H, Zhou Y, Si N, Yang J, Wei X, Zhao H, Bian B. Comparative Analysis of Hydrophilic Ingredients in Toad Skin and Toad Venom Using the UHPLC-HR-MS/MS and UPLC-QqQ-MS/MS Methods Together with the Anti- Inflammatory Evaluation of Indolealkylamines. Molecules, 24, 86-102 (2018).

11. Li X Q, Bao Y C. Clinical research of combined huachansu injection with chemotherapy on advanced non-small cell luns cancer. Journal of Modern Oncology, 17, 60-61 (2009).

12. Wei X, Nan S, Zhang Y, Zhao H, Bian B. Evaluation of Bufadienolides as the Main Antitumor Components in Cinobufacin Injection for Liver and Gastric Cancer Therapy. PLoS ONE, 12, e0169141 (2017).

13. Han L, Yuan B, Shimada R, Hayashi H, Si N, Zhao H Y, Bian B, Takagi N. Cytocidal effects of arenobufagin and hellebrigenin, two active bufadienolide compounds, against human glioblastoma cell line U-87. Int J Oncol, 53, 2488-2502 (2018).

14. Yuan B, Shimada R, Xu K, Han L, Si N, Zhao H, Bian B, Hayashi H, Okazaki M, Takagi N. Multiple cytotoxic effects of gamabufotalin against human glioblastoma cell line U-87. Chem Biol Interact, 314, 108849 (2019).

15. Yuan B, He J, Kisoh K, Hayashi H, Tanaka S, Si N, Zhao H Y, Hirano T, Bian B, Takagi N. Effects of active bufadienolide compounds on human cancer cells and CD4+CD25+Foxp3+ regulatory T cells in mitogen-activated human peripheral blood mononuclear cells. Oncol Rep, 36, 1377-1384 (2016).

16. Gao B, Wei X L, Han L Y, Bian B L. Research on Isolation of Bufadienolides from Cinobufacin Injection and Its Activity Screening of Anti-cancer in Vivo and in Vitro. Chinese Journal of Experimental Traditional Medical Formulae, 23, 78-84 (2017).

17. Ma L, Zhu Y, Fang S, Long H, Liu X, Liu Z. Arenobufagin Induces Apoptotic Cell Death in Human Non-Small-Cell Lung Cancer Cells via the Noxa-Related Pathway. Molecules, 22, 1525 (2017).

18. Zhang D M, Liu J S, Deng L J, Chen M F, Anita Y, Cao H H, Tian H Y, Kwok-Pui F, Hiroshi K, Pan J X. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis, 34, 1331-1342 (2013).

19. Deng L J, Peng Q L, Wang L H, Xu J, Liu J S, Li Y J, Zhuo Z J, Bai L L, Hu L P, Chen W M, Ye W C, Zhang D M. Arenobufagin intercalates with DNA leading to G2 cell cycle arrest via ATM/ATR pathway. Oncotarget, 6, 34258-34275 (2015).

20. Chen L, Mai W, Chen M, Hu J, Zhang D. Arenobufagin inhibits prostate cancer epithelial- mesenchymal transition and metastasis by down-regulating β-catenin. Pharmacol Res, 123, 130-142 (2017).

21. Wang T, Zhuang Z, Zhang P, Wang Y, Mu L, Jin H, Zhou L, Ma X, Liang R, Yuan Y. Effect of arenobufagin on human pancreatic carcinoma cells. Oncol lett, 14, 4971-4976 (2017).

22. Cunha-Filho G A, Resck I S, Cavalcanti B C, Pessoa C, Moraes M O, Ferreira J, Rodrigues F, Santos M. Cytotoxic profile of natural and some modified bufadienolides from toad Rhinella schneideri parotoid gland secretion. Toxicon, 56, 339-348 (2010).

23. Deng L J, Hu L P, Peng Q L, Yang X L, Bai L L, Yiu A, Li Y, Tian H Y, Ye W C, Zhang DM. Hellebrigenin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells through inhibition of Akt. Chem Biol Interact, 219, 184-194 (2014).

24. Jin L, Yuan R Q, Fuchs A, Yao Y, Rosen E M. Expression of interleukin-1beta in human breast carcinoma. Cancer, 80, 421-434 (1997).

25. Yang L, Zhou X, Huang W, Fang Q, Hu J, Yu L, Ma N, Zhang W. Protective Effect of Phillyrin on Lethal LPS-Induced Neutrophil Inflammation in Zebrafish. Cell Physiol Biochem, 43, 2074-2087 (2017).

26. GM B, R M. Toll-like receptor signaling pathways. Science, 300, 1524-1525 (2003).

27. Wang Y, Tu Q, Yan W, Xiao D, Zeng Z, Ouyang Y, Huang L, Cai J, Zeng X, Chen Y J, LiuA. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-kappaB and MAPK pathway. Biochem Biophys Res Commun, 456, 373-379 (2015).

28. Dong D, Zhou H, Na S Y, Niedra R, Peng Y, Wang H, Seed B, Zhou G L. GPR108, an NF- kappaB activator suppressed by TIRAP, negatively regulates TLR-triggered immune responses. PLoS One, 13, e0205303 (2018).

29. Liang X, Xiu C, Liu M, Lin C, Chen H. Platelet-neutrophil interaction aggravates vascular in?ammation and promotes the progression of atherosclerosis by activating the TLR4/NF- κB pathway. J Cell Biochem, 120, 5612-5619 (2018).

30. Ryu S J, Choi H S, Yoon K Y, Lee O H, Kim K J, Lee B Y. Oleuropein suppresses LPS- induced inflammatory responses in RAW 264.7 cell and zebrafish. J Agr Food Chem, 63, 2098-2105 (2015).

31. Hwang S J, Ahn E Y, Park Y, Lee H J. An aqueous extract of Nomura's jellyfish ameliorates inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and a zebrafish model of inflammation. Biomed Pharmacother, 100, 583-589 (2018).

32. Hwang J H, Kim K J, Ryu S J, Lee B Y. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish. Chem-Biol Interact, 248, 1-7 (2016).

33. Kim M Y, Linardic C, Obeid L, Hannun Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biolog Chem, 266, 484-489 (1991).

34. Dressler K A, Mathias S, Kolesnick R N. Tumor necrosis factor-alpha activates the sphingomyelin signal transduction pathway in a cell-free system. Science, 255, 1715-1718 (1992).

35. Heller R A, Krönke M. Tumor Necrosis Factor Receptor-Mediated Signaling Pathways. J Cell Biol, 126, 5-9 (1994).

36. Lim A, Wenk M R, Tong L. Lipid-Based Therapy for Ocular Surface Inflammation and Disease. Trends Mol Med, 21, 736-748 (2015).

37. Titz B, Gadaleta R, Sasso G L, Elamin A, Ekroos K, Ivanov N, Peitsch M, Hoeng J. Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. Int J Mol Sci, 19, 2775 (2018).

38. Han X, Gross R W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics. J Lipid Res, 44, 1071- 1079 (2003).

39. Yang K, Han X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem Sci, 41, 954-969 (2016).

40. Wenk M R. The emerging field of lipidomics. Nat Rev Drug Discov, 4, 594-610 (2005).

41. Meikle P J, Wong G, Barlow C K, Kingwell B A. Lipidomics: potential role in risk prediction and therapeutic monitoring for diabetes and cardiovascular disease. Pharmacol Ther, 143, 12-23 (2014).

42. Zhao Y Y, Cheng X L, Lin R C. Chapter One–Lipidomics Applications for Discovering Biomarkers of Diseases in Clinical Chemistry. Int Rev Cell Mol Biol, 313, 1-26 (2014).

43. Murph, Mandi. Liquid Chromatography Mass Spectrometry for Quantifying Plasma Lysophospholipids: Potential Biomarkers for Cancer Diagnosis. Method Enzymol, 433, 1- 25 (2007).

44. Han X. Lipid Alterations in the Earliest Clinically Recognizable Stage of Alzheimers Disease: Implication of the Role of Lipids in the Pathogenesis of Alzheimers Disease. Curr Alzheimer Res, 2, 65-67 (2005).

45. Zhang B, Wang X, Li Y, Wu M, Wang S Y, Li S. Matrine Is Identified as a Novel Macropinocytosis Inducer by a Network Target Approach. Front Pharmacol, 9, 10 (2018).

46. Zheng J, Wu M, Wang H, Li S, Wang X, Li Y, Wang D, Li S. Network Pharmacology to Unveil the Biological Basis of Health-Strengthening Herbal Medicine in Cancer Treatment. Cancers, 10, 461 (2018).

47. Kim-Anne L, Swapna M, Alderete T L, Hasson R E, Adam T C, Joon Sung K, Elizabeth B, Chen X, Greenberg A S, Hooman A. Subcutaneous adipose tissue macrophage infiltration is associated with hepatic and visceral fat deposition, hyperinsulinemia, and stimulation of NF- κB stress pathway. Diabetes, 60, 2802-2809 (2011).

48. Zong X, Song D, Wang T, Xia X, Hu W, Han F, Y. W. LFP-20, a porcine lactoferrin peptide, ameliorates LPS-induced inflammation via the MyD88/NF-κB and MyD88/MAPK signaling pathways. Dev Comp Immunol, 52, 123-131 (2015).

49. Cuvillier O, Pirianov G, Kleuser B, Vanek P G, Coso O A, Gutkind S, Spiegel S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature, 381, 800-803 (1996).

50. Hannun Y A, Obeid L M. Ceramide: an intracellular signal for apoptosis. Trends in Biochemical Sciences, 20, 73-77 (1995).

51. Kolesnick R N, Krönke M. Regulation of ceramide production and apoptosis. Annu Rev of Physiol, 60, 643-665 (1998).

52. Venable M E, Lee J Y, Smyth M J, Bielawska A, Obeid L M. Role of Ceramide in Cellular Senescence. J Biolog Chem, 270, 30701-30708 (1995).

53. Hannun Y A. The sphingomyelin cycle and the second messenger function of ceramide. J Biolog Chem, 269, 3125-3128 (1994).

54. Li J F, Qu F, Zheng S J, Wu H L, Liu M, Liu S, Ren Y, Ren F, Chen Y, Duan Z P. Elevated plasma sphingomyelin (d18:1/22:0) is closely related to hepatic steatosis in patients with chronic hepatitis C virus infection. Eur J Pharm Sci, 33, 1725-1732 (2014).

55. Gibellini F, Smith T K. The Kennedy pathway--De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life, 62, 414-428 (2010).

56. Chang Z Q, Lee S Y, Kim H J, Kim J R, Kim S J, Hong I K, Oh B C, Choi C S, Goldberg I J, Park T S. Endotoxin activates de novo sphingolipid biosynthesis via nuclear factor kappa B-mediated upregulation of Sptlc2. Prostag Oth Lipid M, 94, 44-52 (2011).

57. Memon R A, Holleran W M, Moser A H, Seki T, Uchida Y, Fuller J, Shigenaga J K, Grunfeld C, Feingold K R. Endotoxin and cytokines increase hepatic sphingolipid biosynthesis and produce lipoproteins enriched in ceramides and sphingomyelin. Arterioscl Throm Vas Biol, 18, 1257-1265 (1998).

58. Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature, 510, 58-67 (2014).

59. Snider S A, Margison K D, Ghorbani P, LeBlond N D, O'Dwyer C, Nunes J R C, Nguyen T, Xu H, Bennett S A L, Fullerton M D. Choline transport links macrophage phospholipid metabolism and inflammation. J Biol Chem, 293, 11600-11611 (2018).

60. Schütze, Stefan, Potthoff, Karin, Machleidt, Thomas, Berkovic, Dinko, Wiegmann, Katja. TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced “Acidic” sphingomyelin breakdown. Cell, 71, 765-776 (1992).

61. Ditz T, Schnapka-Hille L, Noack N, Dorow J, Ceglarek U, Niederwieser D, Schiller J, Fuchs B, Cross M. Phospholipase A2 products predict the hematopoietic support capacity of horse serum. Differentiation, 105, 27-32 (2018).

62. Fahumiya S, Hester K D, Guang Y, Hannun Y A, Jacek B. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes, 55, 2579 (2006).

63. Kolak M. Expression of ceramide-metabolising enzymes in subcutaneous and intra- abdominal human adipose tissue. Lipids Health Dis, 11, 115 (2012).

64. Yoo J M, Kim J H, Park S J, Kang Y J, Kim T J. Inhibitory Effect of Eriodictyol on IgE/Ag- Induced Type I Hypersensitivity. Journal of the Agricultural Chemical Society of Japan, 76, 1285-1290 (2012).

65. Newcomb B, Rhein C, Mileva I, Ahmad R, Clarke C J, Snider J, Obeid L M, Hannun Y A. Identification of an acid sphingomyelinase ceramide kinase pathway in the regulation of the chemokine CCL5. J Lipid Res, 59, jlr.M084202 (2018).

66. Schwandner R, Wiegmann K, Bernardo K, Kreder D, Kronke M. TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J Biolog Chem, 273, 5916-5922 (1998).

67. Kolesnick R, Golde D W. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell, 77, 325-328 (1994).

68. Häfner S, Adler H S, Mischak H, Janosch P, Heidecker G, Wolfman A, Pippig S, Lohse M, Ueffing M, Kolch W. Mechanism of inhibition of Raf-1 by protein kinase A. Mol Cell Biol, 14, 6696-6703 (1994).

69. Deng L J, Qi M, Peng Q L, Chen M F, Qi Q, Zhang J Y, Yao N, Huang M H, Li X B, Peng Y H. Arenobufagin induces MCF-7 cell apoptosis by promoting JNK-mediated multisite phosphorylation of Yes-associated protein. Cancer Cell Int, 18, 209 (2018).

70. Zhang P W, Tian H Y, Nie Q L, Wang L, Jiang R W. Structures and inhibitory activity against breast cancer cells of new bufadienolides from the eggs of toad Bufo bufo gargarizans. Rsc Advances, 6, 93832-93841 (2016).

71. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis.Mol Cancer, 14, 48 (2015).

72. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochimica et biophysica acta, 1833, 3448-3459 (2013).

73. Czabotar P E, Lessene G, Strasser A, Adams J M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol, 15, 49-63 (2014).

74. Xu Y, Lin Z, Zhao N, Zhou L, Liu F, Cichacz Z, Zhang L, Zhan Q, Zhao X. Receptor interactive protein kinase 3 promotes Cisplatin-triggered necrosis in apoptosis-resistant esophageal squamous cell carcinoma cells. PLoS One, 9, e100127 (2014).

75. Singh S K, Banerjee S, Acosta E P, Lillard J W, Singh R. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget, 8, 17216-17228 (2017).

76. Yao M, Yuan B, Wang X, Sato A, Sakuma K, Kaneko K, Komuro H, Okazaki A, Hayashi H, Toyoda H, Pei X, Hu X, Hirano T, Takagi N. Synergistic cytotoxic effects of arsenite and tetrandrine in human breast cancer cell line MCF-7. Int J Oncol, 51, 587-598 (2017).

77. Yuan B, Yoshino Y, Kaise T, Toyoda H, Application of Arsenic Trioxide Therapy for Patients with Leukaemia. In Biological Chemistry of Arsenic, Antimony and Bismuth, Sun, H, Ed. John Wiley Sons, Ltd.: Chichester, 2010; pp 263-292.

78. Perdiguero E, Nebreda A R. Regulation of Cdc25C activity during the meiotic G2/M transition. Cell Cycle, 3, 733-737 (2004).

79. Dai B, Zhan Y, Qi J, Zhang Y. Eupolyphaga sinensis Walker inhibits human chronic myeloid leukemia cell K562 growth by inducing G2-M phase cell cycle arrest and targeting EGFR signaling pathway and in S180 tumor-bearing mice. EnvironToxicol & Phar, 37, 1177-1185 (2014).

80. Li Y, Liu D, Zhou Y, Li Y, Xie J, Lee R J, Cai Y, Teng L. Silencing of Survivin Expression Leads to Reduced Proliferation and Cell Cycle Arrest in Cancer Cells. J Cancer, 6, 1187- 1194 (2015).

81. Yuan B, Xu K, Shimada R, Li J, Hayashi H, Okazaki M, Takagi N. Cytotoxic Effects of Arsenite in Combination With Gamabufotalin Against Human Glioblastoma Cell Lines. Front Oncol, 11, 628914 (2021).

82. Zhang D M, Liu J S, Deng L J, Chen M F, Yiu A, Cao H H, Tian H Y, Fung K P, Kurihara H, Pan J X, Ye W C. Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis, 34, 1331-1342 (2013).

83. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull, 19, 1518-1520 (1996).

84. Yuan B, Yao M, Wang X, Sato A, Okazaki A, Komuro H, Hayashi H, Toyoda H, Pei X, Hu X, Hirano T, Takagi N. Antitumor activity of arsenite in combination with tetrandrine against human breast cancer cell line MDA-MB-231 in vitro and in vivo. Cancer Cell Int, 18, 113 (2018).

85. Kaufmann S H, Desnoyers S, Ottaviano Y, Davidson N E, Poirier G G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res, 53, 3976-3985 (1993).

86. Kocaturk N M, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci, 134, 116-137 (2019).

87. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO journal, 19, 5720-5728 (2000).

88. Chiacchiera F, Simone C. The AMPK-FoxO3A axis as a target for cancer treatment. Cell Cycle, 9, 1091-1096 (2010).

89. Amaravadi R K, Thompson C B. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res, 13, 7271-7279 (2007).

90. Deng L J, Qi M, Peng Q L, Chen M F, Qi Q, Zhang J Y, Yao N, Huang M H, Li X B, Peng Y H, Liu J S, Fu D R, Chen J X, Ye W C, Zhang D M. Arenobufagin induces MCF-7 cell apoptosis by promoting JNK-mediated multisite phosphorylation of Yes-associated protein. Cancer Cell Int, 18, 209 (2018).

91. Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X, Liu C. The role of necroptosis in cancer biology and therapy. Mol Cancer, 18, 100 (2019).

92. Das C M, Aguilera D, Vasquez H, Prasad P, Zhang M, Wolff J E, Gopalakrishnan V. Valproic acid induces p21 and topoisomerase-II (alpha/beta) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines. J neuro-oncol, 85, 159-170 (2007).

93. Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods in molecular biology (Clifton, N.J.), 445, 77-88 (2008).

94. Lee Y, Na J, Lee M S, Cha E Y, Sul J Y, Park J B, Lee J S. Combination of pristimerin and paclitaxel additively induces autophagy in human breast cancer cells via ERK1/2 regulation. Mol Med Rep, 18, 4281-4288 (2018).

95. Mathiassen S G, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape. Front Oncol, 7, 51 (2017).

96. Zheng K, He Z, Kitazato K, Wang Y. Selective Autophagy Regulates Cell Cycle in Cancer Therapy. Theranostics, 9, 104-125 (2019).

97. Yu B, Yuan B, Li J, Kiyomi A, Kikuchi H, Hayashi H, Hu X, Okazaki M, Sugiura M, Hirano T, Fan Y, Pei X, Takagi N. JNK and Autophagy Independently Contributed to Cytotoxicity of Arsenite combined With Tetrandrine via Modulating Cell Cycle Progression in Human Breast Cancer Cells. Front Pharmacol, 11, 1087 (2020).

98. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet, 357, 539-545 (2001).

99. Coussens L M, Werb Z. Inflammation and cancer. Nature, 420, 860-867 (2002).

100. Knüpfer H, Preiß R. Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res Tr, 102, 129-135 (2007).

101. Zhang G, Adachi I. Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res, 19, 1427-1432 (1999).

102. Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Lazennec G. Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast cancer res, 9, R15 (2007).

103. Leek R D, Landers R, Fox S B, Ng F, Harris A L, Lewis C E. Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Brit J Cancer, 77, 2246-2251 (1998).

104. Baumgarten S C, Jonna F. Minireview: Inflammation: An Instigator of More Aggressive Estrogen Receptor (ER) Positive Breast Cancers. Mol Endocrinol, 360-371 (2012).

105. Connelly L, Barham W, Onishko H M, Sherrill T, Chodosh L A, Blackwell T S, Yull F E. Inhibition of NF-kappa B activity in mammary epithelium increases tumor latency and decreases tumor burden. Oncogene, 30, 1402-1412 (2011).

106. Hamidullah, Changkija B, Konwar R. Role of interleukin-10 in breast cancer. Breast Cancer Res Treat, 133, 11-21 (2012).

参考文献をもっと見る