リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Porcine liver decomposition product-derived lysophospholipids promote microglial activation in vitro」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Porcine liver decomposition product-derived lysophospholipids promote microglial activation in vitro

Tsukahara, Tamotsu Haniu, Hisao Uemura, Takeshi Matsuda, Yoshikazu 信州大学 DOI:32111938

2021.02.04

概要

Cognitive impairments such as dementia are common in later life, and have been suggested to occur via a range of mechanisms, including oxidative stress, age-related changes to cellular metabolism, and a loss of phospholipids (PLs) from neuronal membranes. PLs are a class of amphipathic lipids that form plasma membrane lipid bilayers, and that occur at high concentrations in neuronal membranes. Our previous study suggested that a porcine liver decomposition product (PLDP) produced via protease treatment may improve cognitive function at older ages, by acting as a rich source of PLs and lysophospholipids (LPLs); however, its specific composition remains unclear. Thus, the present study used a novel liquid chromatography electrospray ionization tandem mass spectrometric (LCMS/MS) protocol to identify the major PLs and LPLs in PLDP. Furthermore, it assessed the effect of identified LPLs on microglial activation in vitro, including cell shape, proliferation, and cell morphology. The results of the conducted analyses showed that PLDP and PLDP-derived LPLs concentrationdependently modulate microglial activation in vitro. In particular, lysophosphatidylcholine (LPC) concentration-dependently promotes cell morphology, likely via effects mediated by the enzyme autotaxin (ATX), since inhibiting ATX also promoted cell morphology, while conversely, increasing ATX production (via treatment with high levels of LPC) abolished this effect. These findings suggest that LPC is likely neuroprotective, and thus, support the importance of further research to assess its use as a therapeutic target to treat age-related cognitive impairments, including dementia.

この論文で使われている画像

参考文献

1. Adlimoghaddam, A., Roy, B. & Albensi, B. C. Future Trends and the Economic Burden of Dementia in Manitoba: Comparison with

the Rest of Canada and the World. Neuroepidemiology 51, 71–81, https://doi.org/10.1159/000490414 (2018).

2. Brayne, C. & Miller, B. Dementia and aging populations-A global priority for contextualized research and health policy. PLoS Med.

14, e1002275, https://doi.org/10.1371/journal.pmed.1002275 (2017).

3. Brown, H. A. & Murphy, R. C. Working towards an exegesis for lipids in biology. Nat. Chem. Biol. 5, 602–606, https://doi.

org/10.1038/nchembio0909-602 (2009).

4. Muller, C. P. et al. Brain membrane lipids in major depression and anxiety disorders. Biochim. Biophys. Acta 1851, 1052–1065,

https://doi.org/10.1016/j.bbalip.2014.12.014 (2015).

5. Matsuda, Y. et al. Effects of Porcine Liver Decomposition product on the cognitive function in non-dementia patients. Jpn. J. Med.

Pharm. Sci. 73, 1057–1066 (2016). (in Japanease).

6. Escriba, P. V. et al. Membranes: a meeting point for lipids, proteins and therapies. J. Cell Mol. Med. 12, 829–875, https://doi.

org/10.1111/j.1582-4934.2008.00281.x (2008).

Scientific Reports |

(2020) 10:3748 | https://doi.org/10.1038/s41598-020-60781-1

12

www.nature.com/scientificreports/

www.nature.com/scientificreports

7. Kosicek, M. & Hecimovic, S. Phospholipids and Alzheimer’s disease: alterations, mechanisms and potential biomarkers. Int. J. Mol.

Sci. 14, 1310–1322, https://doi.org/10.3390/ijms14011310 (2013).

8. Coppede, F., Bosco, P., Fuso, A. & Troen, A. M. Nutrition and dementia. Curr. Gerontol. Geriatr. Res. 2012, 926082, https://doi.

org/10.1155/2012/926082 (2012).

9. Meck, W. H., Williams, C. L., Cermak, J. M. & Blusztajn, J. K. Developmental periods of choline sensitivity provide an ontogenetic

mechanism for regulating memory capacity and age-related dementia. Front. Integr. Neurosci. 1, 7, https://doi.org/10.3389/

neuro.07.007.2007 (2007).

10. Caudill, M. A. Pre- and postnatal health: evidence of increased choline needs. J. Am. Diet. Assoc. 110, 1198–1206, https://doi.

org/10.1016/j.jada.2010.05.009 (2010).

11. Zeisel, S. H. Importance of methyl donors during reproduction. Am. J. Clin. Nutr. 89, 673S–677S, https://doi.org/10.3945/

ajcn.2008.26811D (2009).

12. Ylilauri, M. P. T. et al. Associations of dietary choline intake with risk of incident dementia and with cognitive performance: the

Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr, https://doi.org/10.1093/ajcn/nqz148 (2019).

13. Tayebati, S. K. et al. Effect of choline-containing phospholipids on brain cholinergic transporters in the rat. J. Neurol. Sci. 302, 49–57,

https://doi.org/10.1016/j.jns.2010.11.028 (2011).

14. Mooradian, A. D. Blood-brain barrier transport of choline is reduced in the aged rat. Brain Res. 440, 328–332 (1988).

15. Cohen, B. M. et al. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. JAMA

274, 902–907 (1995).

16. Higgins, J. P. & Flicker, L. Lecithin for dementia and cognitive impairment. Cochrane Database Syst Rev, CD001015, https://doi.

org/10.1002/14651858.CD001015 (2000).

17. Jorissen, B. L. et al. The influence of soy-derived phosphatidylserine on cognition in age-associated memory impairment. Nutr.

Neurosci. 4, 121–134 (2001).

18. Murakami, M. Lipoquality control by phospholipase A2 enzymes. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 93, 677–702, https://doi.

org/10.2183/pjab.93.043 (2017).

19. Blondeau, N., Lauritzen, I., Widmann, C., Lazdunski, M. & Heurteaux, C. A potent protective role of lysophospholipids against

global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J. Cereb. Blood Flow. Metab. 22, 821–834, https://doi.

org/10.1097/00004647-200207000-00007 (2002).

20. Tsukahara, T., Matsuda, Y. & Haniu, H. Lysophospholipid-Related Diseases and PPARgamma Signaling Pathway. Int J Mol Sci 18,

https://doi.org/10.3390/ijms18122730 (2017).

21. Wang, H. Y., Liu, C. B., Wu, H. W. & Kuo, J. S. Direct profiling of phospholipids and lysophospholipids in rat brain sections after

ischemic stroke. Rapid Commun. Mass. Spectrom. 24, 2057–2064, https://doi.org/10.1002/rcm.4620 (2010).

22. Teo, S. T., Yung, Y. C., Herr, D. R. & Chun, J. Lysophosphatidic acid in vascular development and disease. IUBMB Life 61, 791–799,

https://doi.org/10.1002/iub.220 (2009).

23. Mulder, C. et al. Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer’s disease. J.

Neural Transm. 110, 949–955, https://doi.org/10.1007/s00702-003-0007-9 (2003).

24. Yung, Y. C., Stoddard, N. C., Mirendil, H. & Chun, J. Lysophosphatidic Acid signaling in the nervous system. Neuron 85, 669–682,

https://doi.org/10.1016/j.neuron.2015.01.009 (2015).

25. Edsall, L. C. & Spiegel, S. Enzymatic measurement of sphingosine 1-phosphate. Anal. Biochem. 272, 80–86, https://doi.org/10.1006/

abio.1999.4157 (1999).

26. Sugiura, T. et al. Occurrence of lysophosphatidic acid and its alkyl ether-linked analog in rat brain and comparison of their biological

activities toward cultured neural cells. Biochim. Biophys. Acta 1440, 194–204, https://doi.org/10.1016/s1388-1981(99)00127-4

(1999).

27. Tsukahara, T. 1-O-alkyl glycerophosphate-induced CD36 expression drives oxidative stress in microglial cells. Cell Signal. 65,

109459, https://doi.org/10.1016/j.cellsig.2019.109459 (2019).

28. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917, https://doi.

org/10.1139/o59-099 (1959).

29. Honeyman, T. W., Strohsnitter, W., Scheid, C. R. & Schimmel, R. J. Phosphatidic acid and phosphatidylinositol labelling in adipose

tissue. Relationship to the metabolic effects of insulin and insulin-like agents. Biochem. J. 212, 489–498 (1983).

30. Lloyd, J. V., Nishizawa, E. E., Haldar, J. & Mustard, J. F. Changes in 32 p-labelling of platelet phospholipids in response to ADP. Br. J.

Haematol. 23, 571–585 (1972).

31. Imae, R. et al. LYCAT, a homologue of C. elegans acl-8, acl-9, and acl-10, determines the fatty acid composition of

phosphatidylinositol in mice. J. Lipid Res. 53, 335–347, https://doi.org/10.1194/jlr.M018655 (2012).

32. Baba, T. et al. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics. J. Biol. Chem. 289,

11497–11511, https://doi.org/10.1074/jbc.M113.531921 (2014).

33. Kielkowska, A. et al. A new approach to measuring phosphoinositides in cells by mass spectrometry. Adv. Biol. Regul. 54, 131–141,

https://doi.org/10.1016/j.jbior.2013.09.001 (2014).

34. Morrison, W. R. A Fast, Simple and Reliable Method for the Microdetermination of Phosphorus in Biological Materials. Anal.

Biochem. 7, 218–224 (1964).

35. Matsumoto, J. et al. Decreased 16:0/20:4-phosphatidylinositol level in the post-mortem prefrontal cortex of elderly patients with

schizophrenia. Sci. Rep. 7, 45050, https://doi.org/10.1038/srep45050 (2017).

36. Shindou, H. et al. Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor

cells. J. Biol. Chem. 292, 12054–12064, https://doi.org/10.1074/jbc.M117.790568 (2017).

37. Huang, Y. et al. A computational framework for studying neuron morphology from in vitro high content neuron-based screening. J.

Neurosci. Methods 190, 299–309, https://doi.org/10.1016/j.jneumeth.2010.05.012 (2010).

38. Tsukahara, T. et al. Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARgamma by cyclic phosphatidic

acid. Mol. Cell 39, 421–432, https://doi.org/10.1016/j.molcel.2010.07.022 (2010).

39. Nakanaga, K., Hama, K. & Aoki, J. Autotaxin–an LPA producing enzyme with diverse functions. J. Biochem. 148, 13–24, https://doi.

org/10.1093/jb/mvq052 (2010).

40. Kuttruff, C. A. et al. Discovery of BI-2545: A Novel Autotaxin Inhibitor That Significantly Reduces LPA Levels in Vivo. ACS Med.

Chem. Lett. 8, 1252–1257, https://doi.org/10.1021/acsmedchemlett.7b00312 (2017).

41. Kato-Kataoka, A. et al. Soybean-derived phosphatidylserine improves memory function of the elderly Japanese subjects with

memory complaints. J. Clin. Biochem. Nutr. 47, 246–255, https://doi.org/10.3164/jcbn.10-62 (2010).

42. Schneider, N. et al. Sphingomyelin in Brain and Cognitive Development: Preliminary Data. eNeuro 6, https://doi.org/10.1523/

ENEURO.0421-18.2019 (2019).

43. D’Arrigo, P. & Servi, S. Synthesis of lysophospholipids. Molecules 15, 1354–1377, https://doi.org/10.3390/molecules15031354 (2010).

44. Fahy, E. et al. A comprehensive classification system for lipids. J. Lipid Res. 46, 839–861, https://doi.org/10.1194/jlr.E400004-JLR200

(2005).

45. Zhang, L., Zhang, J. & You, Z. Switching of the Microglial Activation Phenotype is a Possible Treatment for Depression Disorder.

Front. Cell Neurosci. 12, 306, https://doi.org/10.3389/fncel.2018.00306 (2018).

46. Hanisch, U. K. Microglia as a source and target of cytokines. Glia 40, 140–155, https://doi.org/10.1002/glia.10161 (2002).

Scientific Reports |

(2020) 10:3748 | https://doi.org/10.1038/s41598-020-60781-1

13

www.nature.com/scientificreports/

www.nature.com/scientificreports

47. Rojo, A. I. et al. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid. Redox Signal.

21, 1766–1801, https://doi.org/10.1089/ars.2013.5745 (2014).

48. Kettenmann, H., Kirchhoff, F. & Verkhratsky, A. Microglia: new roles for the synaptic stripper. Neuron 77, 10–18, https://doi.

org/10.1016/j.neuron.2012.12.023 (2013).

49. Ganter, S., Northoff, H., Mannel, D. & Gebicke-Harter, P. J. Growth control of cultured microglia. J. Neurosci. Res. 33, 218–230,

https://doi.org/10.1002/jnr.490330205 (1992).

50. Silver, J., Schwab, M. E. & Popovich, P. G. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and

microglia. Cold Spring Harb. Perspect. Biol. 7, a020602, https://doi.org/10.1101/cshperspect.a020602 (2014).

51. Davies, A. M. Neurotrophins: neurotrophic modulation of neurite growth. Curr. Biol. 10, R198–200, https://doi.org/10.1016/s09609822(00)00351-1 (2000).

52. Kierdorf, K. & Prinz, M. Microglia in steady state. J. Clin. Invest. 127, 3201–3209, https://doi.org/10.1172/JCI90602 (2017).

53. Neumann, H., Kotter, M. R. & Franklin, R. J. Debris clearance by microglia: an essential link between degeneration and regeneration.

Brain 132, 288–295, https://doi.org/10.1093/brain/awn109 (2009).

54. Galloway, D. A., Phillips, A. E. M., Owen, D. R. J. & Moore, C. S. Phagocytosis in the Brain: Homeostasis and Disease. Front.

Immunol. 10, 790, https://doi.org/10.3389/fimmu.2019.00790 (2019).

55. Karperien, A., Ahammer, H. & Jelinek, H. F. Quantitating the subtleties of microglial morphology with fractal analysis. Front. Cell

Neurosci. 7, 3, https://doi.org/10.3389/fncel.2013.00003 (2013).

56. Nakamura, K. et al. Suppression of lysophosphatidic acid and lysophosphatidylcholine formation in the plasma in vitro: proposal of

a plasma sample preparation method for laboratory testing of these lipids. Anal. Biochem. 367, 20–27, https://doi.org/10.1016/j.

ab.2007.05.004 (2007).

57. Taylor, L. A., Arends, J., Hodina, A. K., Unger, C. & Massing, U. Plasma lyso-phosphatidylcholine concentration is decreased in

cancer patients with weight loss and activated inflammatory status. Lipids Health Dis. 6, 17, https://doi.org/10.1186/1476-511X-6-17

(2007).

58. Ojala, P. J., Hirvonen, T. E., Hermansson, M., Somerharju, P. & Parkkinen, J. Acyl chain-dependent effect of lysophosphatidylcholine

on human neutrophils. J. Leukoc. Biol. 82, 1501–1509, https://doi.org/10.1189/jlb.0507292 (2007).

59. Wuhanqimuge, I. A., Matsuki, Y., Tanaka, M. & Arioka, M. Lysophosphatidylcholine enhances NGF-induced MAPK and Akt signals

through the extracellular domain of TrkA in PC12 cells. FEBS Open. Bio 3, 243–251, https://doi.org/10.1016/j.fob.2013.05.003

(2013).

60. Hooks, S. B. et al. Lysophosphatidic acid-induced mitogenesis is regulated by lipid phosphate phosphatases and is Edg-receptor

independent. J. Biol. Chem. 276, 4611–4621, https://doi.org/10.1074/jbc.M007782200 (2001).

61. Fukushima, N. et al. Lysophosphatidic acid influences the morphology and motility of young, postmitotic cortical neurons. Mol. Cell

Neurosci. 20, 271–282 (2002).

62. Tigyi, G. et al. Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and

Rho. J. Neurochem. 66, 537–548, https://doi.org/10.1046/j.1471-4159.1996.66020537.x (1996).

63. Tigyi, G., Dyer, D. L. & Miledi, R. Lysophosphatidic acid possesses dual action in cell proliferation. Proc. Natl Acad. Sci. USA 91,

1908–1912, https://doi.org/10.1073/pnas.91.5.1908 (1994).

64. Lin, M. E., Herr, D. R. & Chun, J. Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins

Other Lipid Mediat. 91, 130–138, https://doi.org/10.1016/j.prostaglandins.2009.02.002 (2010).

65. Yun, D. H., Jeon, E. S., Sung, S. M., Ryu, S. H. & Kim, J. H. Lysophosphatidylcholine suppresses apoptosis and induces neurite

outgrowth in PC12 cells through activation of phospholipase D2. Exp. Mol. Med. 38, 375–384, https://doi.org/10.1038/emm.2006.44

(2006).

66. Bachiller, S. et al. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Front. Cell

Neurosci. 12, 488, https://doi.org/10.3389/fncel.2018.00488 (2018).

67. Terrando, N. et al. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc. Natl Acad.

Sci. USA 107, 20518–20522, https://doi.org/10.1073/pnas.1014557107 (2010).

68. Fenn, A. M., Henry, C. J., Huang, Y., Dugan, A. & Godbout, J. P. Lipopolysaccharide-induced interleukin (IL)-4 receptor-alpha

expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav.

Immun. 26, 766–777, https://doi.org/10.1016/j.bbi.2011.10.003 (2012).

69. Himmerich, H., Patsalos, O., Lichtblau, N., Ibrahim, M. A. A. & Dalton, B. Cytokine Research in Depression: Principles, Challenges,

and Open Questions. Front. Psychiatry 10, 30, https://doi.org/10.3389/fpsyt.2019.00030 (2019).

Acknowledgements

This work was supported by a grant awarded to Hisao Haniu by the Japan Society for the Promotion of Science

KAKENHI (Grant Number, 16K15660), a grant awarded to Tamotsu Tsukahara by the Ito Foundation (Grant

Number, ken-1), and by the Japan Society for the Promotion of Science KAKENHI (Grant Number, 19K07322).

This work was the result of using research equipment shared in MEXT Project for promoting public utilization

of advanced research infrastructure (Program for supporting introduction of the new sharing system) Grant

Number JPMXS0422500320.

Author contributions

T.T., H.H., T.U. and Y.M. conceived and designed the project. T.T., Y.M. and H.H. acquired the data. LC-MS/MS

data was analyzed by Japan Lipid Technologies (Akita, Japan). T.T. and H.H. analyzed and interpreted all other

data, and T.T. wrote the manuscript. All authors have read and approved the final version of the article.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-60781-1.

Correspondence and requests for materials should be addressed to T.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Scientific Reports |

(2020) 10:3748 | https://doi.org/10.1038/s41598-020-60781-1

14

www.nature.com/scientificreports/

www.nature.com/scientificreports

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the

copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

Scientific Reports |

(2020) 10:3748 | https://doi.org/10.1038/s41598-020-60781-1

15

...

参考文献をもっと見る