リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Three-dimensional visualization of thoracodorsal artery perforators using photoacoustic imaging」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Three-dimensional visualization of thoracodorsal artery perforators using photoacoustic imaging

Shimizu, Hanako Saito, Susumu Yoshikawa, Aya Sekiguchi, Hiroyuki Tsuge, Itaru Morimoto, Naoki Toi, Masakazu 京都大学 DOI:10.1016/j.bjps.2022.06.016

2022.09.01

概要

Introduction: Diagnostic imaging modalities to evaluate the three-dimensional distribution of thoracodorsal artery perforators (TDAPs) are lacking. In this study, TDAPs were visualized and characterized using photoacoustic imaging. Material and methods: In this study, 34 sites in the lateral chest wall of 18 individuals were analyzed. The region extending 5 cm ventral and 5 cm dorsal to the lateral edge of the latissimus dorsi (LD) and 5–15 cm from the posterior axillary fold was scanned using photoacoustic imaging. The largest perforator closest to the edge of the LD was characterized. The location of the stem portion and the orientation of the longest cutaneous branch of the perforator were described. The relationship between the maximal depth of delineation on photoacoustic images and the depth of the deep fascia was assessed. Results: On average, 2.6 perforators (range, 1–5 perforators) were visualized in the region of interest. The distribution of the TDAP stem portion was similar to that in previous studies. Cutaneous branches were preferentially oriented in a medial-caudal direction. The length of delineated cutaneous branches varied (range, 7–78 mm) depending on the thickness of the subcutaneous layer. Vessels under the LD were observed when the subcutaneous layer was thin. Conclusion: Photoacoustic imaging can successfully visualize TDAPs in three dimensions. Visualization of TDAPs varied by the thickness of the subcutaneous layer. A thin deep fascia of the LD might be a cause of deep laser penetration.

この論文で使われている画像

参考文献

1. Angrigiani C, Grilli D, Siebert J. Latissimus dorsi mus- culocutaneous flap without muscle. Plast Reconstr Surg 1995;96:1608–14.

2. Hamdi M, Van Landuyt K, Monstrey S, Blondeel P. Pedicled per- forator flaps in breast reconstruction: a new concept. Br J Plast Surg 2004;57:531–9.

3. Koshima I, Narushima M, Mihara M, et al. New thoracodorsal artery perforator (TAPcp) flap with capillary perforators for reconstruction of upper limb. J Plast Reconstr Aesthet Surg 2010;63:140–5.

4. O’Connell JE, Bajwa MS, Schache AG, Shaw RJ. Head and neck reconstruction with free flaps based on the thoracodorsal sys- tem. Oral Oncol 2017;75:46–53.

5. Kim EJ, Lee KT, Lim SY, et al. Reconstructing facial contour deformities using stereoscopic thoracodorsal artery perforator adipofascial flaps. Microsurgery 2017;37:300–6.

6. Arikawa M, Miyamoto S, Fujiki M, Higashino T, Oshima A, Sakuraba M. Comparison of donor site drainage duration and seroma rate between latissimus dorsi musculocutaneous flaps and thoracodorsal artery perforator flaps. Ann Plast Surg 2017;79:183–5.

7. Thomas BP, Geddes CR, Tang M, Williams J, Morris SF. The vas- cular basis of the thoracodorsal artery perforator flap. Plast Reconstr Surg 2005;116:818–22.

8. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 2012;23:1458–62 335.

9. Tsuge I, Saito S, Sekiguchi H, et al. Photoacoustic tomography shows the branching pattern of anterolateral thigh perforators In Vivo. Plast Reconstr Surg 2018;141:1288–92.

10. Saito S, Bise R, Yoshikawa A, Sekiguchi H, Tsuge I, Toi M. Digi- tal artery deformation on movement of the proximal interpha- langeal joint. J Hand Surg Eur 2019;44:187–95 Vol..

11. Toi M, Asao Y, Matsumoto Y, et al. Visualization of tu- mor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array. Sci Rep 2017;7:41970.

12. Yamaga I, Kawaguchi-Sakita N, Asao Y, et al. Vascular branch- ing point counts using photoacoustic imaging in the superficial layer of the breast: a potential biomarker for breast cancer. Photoacoustics 2018;11:6–13.

13. Nagae K, Asao Y, Sudo Y, et al. Real-time 3D photoacoustic vi- sualization system with a wide field of view for imaging Human Limbs. F1000Res 2018;7:1813.

14. Mun GH, Lee SJ, Jeon BJ. Perforator topography of the thoracodorsal artery perforator flap. Plast Reconstr Surg 2008;121:497–504.

15. Schaverien M, Saint-Cyr M, Arbique G, Brown SA, Rohrich RJ. Three- and four-dimensional arterial and venous anatomies of the thoracodorsal artery perforator flap. Plast Reconstr Surg 2008;121:1578–87.

16. Heitmann C, Guerra A, Metzinger SW, Levin LS, Allen RJ. The thoracodorsal artery perforator flap: anatomic basis and clini- cal application. Ann Plast Surg 2003;51:23–9.

17. American national standard for safe use of lasers: American National Standards Institute, 2014. https://www.ansi.org/ (10 June 2015).

18. Sekiguchi H, Yoshikawa A, Matsumoto Y, et al. Body surface de- tection method for photoacoustic image data using cloth-sim- ulation technique. In: Proceedings of the SPIE BiOS, San Fran- ciso, California; February 19, 2018.

19. Schaverien M, Wong C, Bailey S, Saint-Cyr M. Thoracodor- sal artery perforator flap and Latissimus dorsi myocutaneous flap–anatomical study of the constant skin paddle perforator locations. J Plast Reconstr Aesthet Surg 2010;63:2123–7.

20. Guerra AB, Metzinger SE, Lund KM, Cooper MM, Allen RJ, Dupin CL. The thoracodorsal artery perforator flap: clinical ex-perience and anatomic study with emphasis on harvest tech- niques. Plast Reconstr Surg 2004;114:32–41.

21. Lin CT, Huang JS, Yang KC, et al. Reliability of anatomical land- marks for skin perforators of the thoracodorsal artery perfora- tor flap. Plast Reconstr Surg 2006;118:1376–86.

22. Tashiro K, Yamashita S, Araki J, Narushima M, Iida T, Koshima I. Preoperative color Doppler ultrasonographic examination in the planning of thoracodorsal artery perforator flap with capillary perforators. J Plast Reconstr Aesthet Surg 2016;69:346–50.

23. Onoda S, Azumi S, Hasegawa K, Kimata Y. Preoperative iden- tification of perforator vessels by combining MDCT, doppler flowmetry, and ICG fluorescent angiography. Microsurgery 2013;33:265–9.

24. Kim JG, Lee SH. Comparison of the Multidetector-row Com- puted tomographic angiography axial and coronal planes’ use-fulness for detecting thoracodorsal artery perforators. Arch Plast Surg 2012;39:354–9.

25. Pirri C, Fede C, Petrelli L. An anatomical comparison of the fasciae of the thigh: a macroscopic, microscopic and ultrasound imaging study. J Anat 2021;238:999–1009.

26. Bogduk N, Johnson G, Spalding D. The morphology and biome- chanics of latissimus dorsi. Clin Biomech (Bristol, Avon) 1998;13:377–85.

27. Watanabe K, Kiyokawa K, Rikimaru H, et al. Anatomical study of latissimus dorsi musculocutaneous flap vascular distribution. J Plast Reconstr Aesthet Surg 2010;63:1091–8.

28. Tsuge I, Saito S, Yamamoto G, et al. Preoperative vascu- lar mapping for anterolateral thigh flap surgeries: a clini- cal trial of photoacoustic tomography imaging. Microsurgery 2020;40:324–30.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る