リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Octacalcium phosphate crystals including a higher density dislocation improve its materials osteogenecity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Octacalcium phosphate crystals including a higher density dislocation improve its materials osteogenecity

Hamai, Ryo 大阪大学

2022.03.01

概要

Herein, we show that the enhanced osteogenecity of octacalcium phosphate (OCP) biomaterial, recently identified as an important element in hybrid organic–inorganic nanocomposites involved in the initial hy- droxyapatite crystal expansion in mammal bones, results from an enhanced chemical property, stemming from the presence of lattice strain and dislocations. Two types of OCPs were synthesized by wet-chemical processing in the presence (c-OCP) and absence (w-OCP) of gelatin, respectively, and subjected to struc- tural, chemical, and biological analyses. High-resolution transmission electron microscopy (HRTEM) and fast Fourier transform (FFT) analyses revealed that c-OCP crystals contained approximately six times higher edge dislocations with Burgers vectors perpendicular to a-axis than that in the case of w-OCP. The dissolution of c-OCP crystal in tris-HCl buffer occurred toward the long axis of the crystal, most likely, toward the lattice strain along the c-axis direction, while w-OCP crystal dissolved toward the a- axis direction. The study suggested that the increment of internal energy by the higher dislocation den- sity contributed promoting c-OCP dissolution and hydrolysis through decreasing the activation energy. c-OCP crystal displayed enhanced in vitro mesenchymal stem 2D cell and 3D spheroid differentiation, in vivo bone formation, and apatite crystallographic orientation in critical-sized rat calvarial defect model as compared to w-OCP crystal, at the same time, converting to apatite structure earlier than w-OCP. The present study demonstrates that dislocation-related dissolution along with enhanced conversion of OCP is a determinant in bone induction, which may be relevant to normal bone development utilizing OCP biomaterials.

この論文で使われている画像

参考文献

[1] K. Yokoyama, M. Tomita, J. Sakai, Hydrogen embrittlement behavior induced by dynamic martensite transformation of Ni–Ti superelastic alloy, Acta Mater. 57 (2009) 1875–1885, doi:10.1016/j.actamat.2008.12.030.

[2] E. Bres, J. Barry, J. Hutchison, A structural basis for the carious dissolution of the apatite crystals of human tooth enamel, Ultramicroscopy 12 (1983) 367– 371, doi:10.1016/0304-3991(83)90250- 4.

[3] A. Matsugaki, G. Aramoto, T. Nakano, The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion, Biomaterials 33 (2012) 7327–7335, doi:10.1016/j.biomaterials.2012.06.022.

[4] T. Kawai, S. Kamakura, K. Matsui, M. Fukuda, H. Takano, M. Iino, S. Ishikawa, H. Kawana, T. Soma, E. Imamura, H. Kizu, A. Michibata, I. Asahina, K. Miura, N. Nakamura, T. Kibe, O. Suzuki, T. Takahashi, Clinical study of octacalcium phosphate and collagen composite in oral and maxillofacial surgery, J. Tissue Eng. 11 (2020) 2041731419896449, doi:10.1177/2041731419896449.

[5] O. Suzuki, S. Kamakura, T. Katagiri, M. Nakamura, B. Zhao, Y. Honda, R. Kamijo, Bone formation enhanced by implanted octacalcium phosphate involving con- version into Ca-deficient hydroxyapatite, Biomaterials 27 (2006) 2671–2681, doi:10.1016/j.biomaterials.2005.12.004.

[6] O. Suzuki, M. Nakamura, Y. Miyasaka, M. Kagayama, M. Sakurai, Bone forma- tion on synthetic precursors of hydroxyapatite, Tohoku J. Exp. Med. 164 (1991) 37–50, doi:10.1620/tjem.164.37.

[7] H. Imaizumi, M. Sakurai, O. Kashimoto, T. Kikawa, O. Suzuki, Comparative study on osteoconductivity by synthetic octacalcium phosphate and sintered hydroxyapatite in rabbit bone marrow, Calcif. Tissue Int. 78 (2006) 45–54, doi:10.1007/s00223-005-0170-0.

[8] N. Miyatake, K.N. Kishimoto, T. Anada, H. Imaizumi, E. Itoi, O. Suzuki, Effect of partial hydrolysis of octacalcium phosphate on its osteoconductive characteris- tics, Biomaterials 30 (2009) 1005–1014, doi:10.1016/j.biomaterials.2008.10.058.

[9] S. Saito, R. Hamai, Y. Shiwaku, T. Hasegawa, S. Sakai, K. Tsuchiya, Y. Sai, R. Iwama, N. Amizuka, T. Takahashi, O. Suzuki, Involvement of distant octa- calcium phosphate scaffolds in enhancing early differentiation of osteocytes during bone regeneration, Acta Biomater. 129 (2021) 309–322, doi:10.1016/j. actbio.2021.05.017.

[10] O. Suzuki, S. Kamakura, T. Katagiri, Surface chemistry and biological responses to synthetic octacalcium phosphate, J. Biomed. Mater. Res. Part B 77 (2006) 201–212, doi:10.1002/jbm.b.30407.

[11] R. Nishikawa, T. Anada, R. Ishiko-Uzuka, O. Suzuki, Osteoblastic differentiation of stromal ST-2 cells from octacalcium phosphate exposure via p38 signaling pathway, Dent. Mater. J. 33 (2014) 242–251, doi:10.4012/dmj.2013-226.

[12] M. Takami, A. Mochizuki, A. Yamada, K. Tachi, B. Zhao, Y. Miyamoto, T. Anada, Y. Honda, T. Inoue, M. Nakamura, O. Suzuki, R. Kamijo, Osteoclast differenti- ation induced by synthetic octacalcium phosphate through receptor activator of NF-κB ligand expression in osteoblasts, Tissue Eng. Part A 15 (2009) 3991– 4000, doi:10.1089/ten.TEA.2009.0065.

[13] Y. Sai, Y. Shiwaku, T. Anada, K. Tsuchiya, T. Takahashi, O. Suzuki, Capacity of oc- tacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro, Acta Biomater. 69 (2018) 362–371, doi:10.1016/j.actbio.2018.01.026.

[14] J.L. Meyer, E.D. Eanes, A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate, Calcif. Tissue Res. 25 (1978) 209–216, doi:10.1007/bf02010771.

[15] W.E. Brown, Crystal growth of bone mineral, Clin. Orthop. Relat. Res. 44 (1966) 205–220.

[16] W.E. Brown, J.P. Smith, J.R. Lehr, A.W. Frazier, Octacalcium phosphate and hydroxyapatite: crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite, Nature 196 (1962) 1050–1055, doi:10.1038/ 1961050a0.

[17] M. Mathew, W.E. Brown, L.W. Schroeder, B. Dickens, Crystal struc- ture of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate, Ca8 (HPO4 )2 (PO4 )4 ·5H2 O, J. Crystallogr. Spectrosc. Res. 18 (1988) 235–250, doi:10.1007/BF01194315.

[18] D.R. Simpson, Problems of the composition and structure of the bone minerals, Clin. Orthop. Relat. Res. 86 (1972) 260–286, doi:10.1097/ 00003086-197207000-00039.

[19] C. Rey, C. Combes, What bridges mineral platelets of bone? BoneKEy Rep. 3 (2014) 1–2, doi:10.1038/bonekey.2014.81.

[20] P. Simon, D. Grüner, H. Worch, W. Pompe, H. Lichte, T. El Khassawna, C. Heiss, S. Wenisch, R. Kniep, First evidence of octacalcium phosphate@ osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization, Sci. Rep. 8 (2018) 13696, doi:10.1038/s41598-018-31983- 5.

[21] O. Suzuki, H. Yagishita, T. Amano, T. Aoba, Reversible structural changes of oc- tacalcium phosphate and labile acid phosphate, J. Dent. Res. 74 (1995) 1764– 1769, doi:10.1177/00220345950740110801.

[22] W.J. Habraken, J. Tao, L.J. Brylka, H. Friedrich, L. Bertinetti, A.S. Schenk, A. Verch, V. Dmitrovic, P.H. Bomans, P.M. Frederik, J. Laven, P. van der Schoot, B. Aichmayer, G.de With, J.J. DeYoreo, N.A.J.M. Sommerdijk, Ion-association complexes unite classical and non-classical theories for the biomimetic nu-cleation of calcium phosphate, Nat. Commun. 4 (2013) 1507, doi:10.1038/ ncomms2490.

[23] W.E. Brown, J.R. Lehr, J.P. Smith, A.W. Frazier, Crystallography of octacalcium phosphate, J. Am. Chem. Soc. 79 (1957) 5318–5319, doi:10.1021/ja01576a068.

[24] H. Newsely, Darstellung von “Oktacalciumphosphat”(Tetracalcium- hydrogentrisphosphat) durch homogene kristallisation, Monatsh. Chem. 91 (1960) 1020–1023, doi:10.1007/BF00899825.

[25] E. Hayek, Die mineralsubstanz der knochen, Klin. Wochenschr. 45 (1967) 857–863, doi:10.1007/BF01745681.

[26] Y. Liu, R. Shelton, J. Barralet, Homogeneous octacalcium phosphate precipita- tion: effect of temperature and pH, Key Eng. Mater. 254-256 (2003) 79–82, doi:10.4028/www.scientific.net/KEM.254-256.79.

[27] M. Iijima, H. Kamemizu, N. Wakamatsu, T. Goto, Y. Doi, Y. Moriwaki, Effects of Ca addition on the formation of octacalcium phosphate and apatite in solu- tion at pH 7.4 and at 37°C, J. Cryst. Growth 193 (1998) 182–188, doi:10.1016/S0022-0248(98)00455-2.

[28] A. Bigi, B. Bracci, S. Panzavolta, M. Iliescu, M. Plouet-Richard, J. Werckmann, D. Cam, Morphological and structural modifications of octacalcium phosphate induced by poly-l-aspartate, Cryst. Growth Des. 4 (2004) 141–146, doi:10.1021/ cg034078d.

[29] J. Moradian-Oldak, M. Iijima, N. Bouropoulos, H.B. Wen, Assembly of amelogenin proteolytic products and control of octacalcium phosphate crystal morphology, Connect. Tissue Res. 44 (2003) 58–64, doi:10.1080/03008200390152106.

[30] K. Tsuchiya, R. Hamai, S. Sakai, O. Suzuki, Comparative analysis of bovine serum albumin adsorption onto octacalcium phosphate crystals prepared us- ing different methods, Dent. Mater. J. 39 (2020) 883–891, doi:10.4012/dmj. 2019-250.

[31] T. Handa, T. Anada, Y. Honda, H. Yamazaki, K. Kobayashi, N. Kanda, S. Ka- makura, S. Echigo, O. Suzuki, The effect of an octacalcium phosphate co- precipitated gelatin composite on the repair of critical-sized rat calvarial de- fects, Acta Biomater. 8 (2012) 1190–1200, doi:10.1016/j.actbio.2011.12.002.

[32] S. Chiba, T. Anada, K. Suzuki, K. Saito, Y. Shiwaku, N. Miyatake, K. Baba, H. Imaizumi, M. Hosaka, E. Itoi, O. Suzuki, Effect of resorption rate and osteo- conductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone, J. Biomed. Mater. Res. Part A 104 (2016) 2833–2842, doi:10.1002/jbm.a.35828.

[33] R. Ishiko-Uzuka, T. Anada, K. Kobayashi, T. Kawai, Y. Tanuma, K. Sasaki, O. Suzuki, Oriented bone regenerative capacity of octacalcium phos- phate/gelatin composites obtained through two-step crystal preparation method, J. Biomed. Mater. Res. Part B 105 (2017) 1029–1039, doi:10.1002/jbm. b.33640.

[34] S. Sakai, T. Anada, K. Tsuchiya, H. Yamazaki, H.C. Margolis, O. Suzuki, Compar-ative study on the resorbability and dissolution behavior of octacalcium phos- phate, β-tricalcium phosphate, and hydroxyapatite under physiological condi- tions, Dent. Mater. J. 35 (2016) 216–224, doi:10.4012/dmj.2015-255.

[35] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactiv- ity? Biomaterials 27 (2006) 2907–2915, doi:10.1016/j.biomaterials.2006.01.017.

[36] K. Baba, Y. Shiwaku, R. Hamai, Y. Mori, T. Anada, K. Tsuchiya, I. Oizumi, N. Miy- atake, E. Itoi, O. Suzuki, Chemical stability-sensitive osteoconductive perfor- mance of octacalcium phosphate bone substitute in an ovariectomized rat tibia defect, ACS Appl. Bio Mater. 3 (2020) 1444–1458, doi:10.1021/acsabm.9b01091.

[37] T. Sato, T. Anada, R. Hamai, Y. Shiwaku, K. Tsuchiya, S. Sakai, K. Baba, K. Sasaki, O. Suzuki, Culture of hybrid spheroids composed of calcium phosphate ma- terials and mesenchymal stem cells on an oxygen-permeable culture device to predict in vivo bone forming capability, Acta Biomater. 88 (2019) 477–490, doi:10.1016/j.actbio.2019.03.001.

[38] T. Anada, J. Fukuda, Y. Sai, O. Suzuki, An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids, Bio- materials 33 (2012) 8430–8441, doi:10.1016/j.biomaterials.2012.08.040.

[39] M. Wakasa, K. Nakanishi, K. Manago, T. Isobe, Y. Eshita, M. Okamoto, T. Isshiki, Fine structure of tooth enamel in the yellowing human teeth: SEM and HRTEM studies, Microsc. Res. Tech. 79 (2016) 14–22, doi:10.1002/jemt.22600.

[40] Q. Wang, S. Ri, H. Tsuda, M. Kodera, K. Suguro, N. Miyashita, Visualization and automatic detection of defect distribution in GaN atomic structure from sam- pling Moiré phase, Nanotechnology 28 (2017) 455704, doi:10.1088/1361-6528/ aa8d83.

[41] D. Hull, D.J. Bacon, Introduction to Dislocations, 5th ed., Butterworth-Heine- mann, Oxford, 2011.

[42] A.E. Porter, S.M. Best, W. Bonfield, Ultrastructural comparison of hydroxya- patite and silicon-substituted hydroxyapatite for biomedical applications, J. Biomed. Mater. Res. Part A 68A (2004) 133–141, doi:10.1002/jbm.a.20064.

[43] K. Okuyama, K. Miyama, K. Mizuno, H.P. Bächinger, Crystal structure of (Gly- Pro-Hyp) 9: implications for the collagen molecular model, Biopolymers 97 (2012) 607–616, doi:10.1002/bip.22048.

[44] L. Wang, G.H. Nancollas, Calcium orthophosphates: crystallization and dissolu- tion, Chem. Rev. 108 (2008) 4628–4669, doi:10.1021/cr0782574.

[45] W.E. Brown, M. Mathew, M.S. Tung, Crystal-chemistry of octacalcium phos- phate, Prog. Cryst. Growth Charact. 4 (1981) 59–87, doi:10.1016/0146-3535(81)90048-4.

[46] N. Eidelman, L.C. Chow, W.E. Brown, Calcium phosphate saturation levels in ul- trafiltered serum, Calcif. Tissue Int. 40 (1987) 71–78, doi:10.1007/BF02555708.

[47] D.G.A. Nelson, J.D. McLean, High-resolution electron microscopy of octacalcium phosphate and its hydrolysis products, Calcif. Tissue Int. 36 (1984) 219–232, doi:10.1007/BF02405321.

[48] M. Iijima, H. Kamemizu, N. Wakamatsu, T. Goto, Y. Doi, Y. Moriwaki, Transition of octacalcium phosphate to hydroxyapatite in solution at pH 7.4 and 37°C, J. Cryst. Growth 181 (1997) 70–78, doi:10.1016/S0022-0248(97)00230-3.

[49] N. Ito, M. Kamitakahara, M. Yoshimura, K. Ioku, Importance of nucleation in transformation of octacalcium phosphate to hydroxyapatite, Mater. Sci. Eng. C 40 (2014) 121–126, doi:10.1016/j.msec.2014.03.034.

[50] R. Tang, W. Wu, M. Haas, G.H. Nancollas, Kinetics of dissolution of β-tricalcium phosphate, Langmuir 17 (2001) 3480–3485, doi:10.1021/la001730n.

[51] M. Ohara, R.C. Reid, Modeling Crystal Growth Rates from Solution, Pren- tice-Hall, Englewood Cliffs, 1973.

[52] H.H. Teng, Controls by saturation state on etch pit formation during cal- cite dissolution, Geochim. Cosmochim. Acta 68 (2004) 253–262, doi:10.1016/ S0016-7037(03)00423-X.

[53] A.E. Blum, R.A. Yund, A.C. Lasaga, The effect of dislocation density on the dissolution rate of quartz, Geochim. Cosmochim. Acta 54 (1990) 283–297, doi:10.1016/0016-7037(90)90318- F.

[54] K.A. Gross, S. Saber-Samandari, K.S. Heemann, Evaluation of commercial im- plants with nanoindentation defines future development needs for hydroxya- patite coatings, J. Biomed. Mater. Res. Part B 93 (2010) 1–8, doi:10.1002/jbm.b. 31537.

[55] S. Saber-Samandari, K.A. Gross, Amorphous calcium phosphate offers improved crack resistance: a design feature from nature? Acta Biomater. 7 (2011) 4235– 4241, doi:10.1016/j.actbio.2011.06.048.

[56] S.S. Bhat, U.V. Waghmare, U. Ramamurty, First-principles study of structure, vibrational, and elastic properties of stoichiometric and calcium-deficient hy- droxyapatite, Cryst. Growth Des. 14 (2014) 3131–3141, doi:10.1021/cg5004269.

[57] K. Kobayashi, T. Anada, T. Handa, N. Kanda, M. Yoshinari, T. Takahashi, O. Suzuki, Osteoconductive property of a mechanical mixture of octacalcium phosphate and amorphous calcium phosphate, ACS Appl. Mater. Interfaces 6 (2014) 22602–22611, doi:10.1021/am5067139.

[58] T. Kurobane, Y. Shiwaku, T. Anada, R. Hamai, K. Tsuchiya, K. Baba, M. Iikubo, T. Takahashi, O. Suzuki, Angiogenesis involvement by octacalcium phosphate- gelatin composite-driven bone regeneration in rat calvaria critical-sized defect, Acta Biomater. 88 (2019) 514–526, doi:10.1016/j.actbio.2019.02.021.

[59] T. Nakano, K. Kaibara, Y. Tabata, N. Nagata, S. Enomoto, E. Marukawa, Y. Umakoshi, Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system, Bone 31 (2002) 479–487, doi:10.1016/S8756-3282(02)00850- 5.

[60] T. Ishimoto, T. Nakano, Y. Umakoshi, M. Yamamoto, Y. Tabata, Degree of biolog- ical apatite c-axis orientation rather than bone mineral density controls me- chanical function in bone regenerated using recombinant bone morphogenetic protein-2, J. Bone Miner. Res. 28 (2013) 1170–1179, doi:10.1002/jbmr.1825.

[61] O. Suzuki, H. Yagishita, M. Yamazaki, T. Aoba, Adsorption of bovine serum al- bumin onto octacalcium phosphate and its hydrolyzates, Cells Mater. 5 (1995) 45–54 https://digitalcommons.usu.edu/cellsandmaterials/vol5/iss1/4.

[62] K. Onuma, A. Ito, Cluster growth model for hydroxyapatite, Chem. Mater. 10 (1998) 3346–3351, doi:10.1021/cm980062c.

[63] M. Iijima, J. Moradian-Oldak, Control of octacalcium phosphate and apatite crystal growth by amelogenin matrices, J. Mater. Chem. 14 (2004) 2189–2199, doi:10.1039/B401961J.

[64] E. Davies, K.H. Müller, W.C. Wong, C.J. Pickard, D.G. Reid, J.N. Skepper, M.J. Duer, Citrate bridges between mineral platelets in bone, Proc. Natl. Acad. Sci. U S A. 111 (2014) E1354–E1363, doi:10.1073/pnas.1315080111.

[65] Y. Wang, S. Von Euw, F.M. Fernandes, S. Cassaignon, M. Selmane, G. Lau- rent, G. Pehau-Arnaudet, C. Coelho, L. Bonhomme-Coury, M.M. Giraud-Guille, F. Babonneau, T. Azais, N. Nassif, Water-mediated structuring of bone apatite, Nat. Mater. 12 (2013) 1144–1153, doi:10.1038/nmat3787.

[66] A. Lotsari, A.K. Rajasekharan, M. Halvarsson, M. Andersson, Transformation of amorphous calcium phosphate to bone-like apatite, Nat. Commun. 9 (2018) 4170, doi:10.1038/s41467-018-06570- x.

[67] S. Von Euw, Y. Wang, G. Laurent, C. Drouet, F. Babonneau, N. Nassif, T. Azais, Bone mineral: new insights into its chemical composition, Sci. Rep. 9 (2019) 8456, doi:10.1038/s41598-019-44620- 6.

[68] A. Dey, P.H. Bomans, F.A. Müller, J. Will, P.M. Frederik, G. de With, N.A.J.M. Sommerdijk, The role of prenucleation clusters in surface-induced cal- cium phosphate crystallization, Nat. Mater. 9 (2010) 1010–1014, doi:10.1038/ nmat2900.

[69] H. Zhu, D. Guo, L. Sun, H. Li, D.A.H. Hanaor, F. Schmidt, K. Xu, Nanostructural insights into the dissolution behavior of Sr-doped hydroxyapatite, J. Eur. Ce- ram. Soc. 38 (2018) 5554–5562, doi:10.1016/j.jeurceramsoc.2018.07.056.

[70] A.J. Nathanael, S.I. Hong, D. Mangalaraj, N. Ponpandian, P.C. Chen, Template- free growth of novel hydroxyapatite nanorings: formation mechanism and their enhanced functional properties, Cryst. Growth Des. 12 (2012) 3565–3574, doi:10.1021/cg3003959.

[71] I.S. Yahia, M. Shkir, S. AlFaify, V. Ganesh, H.Y. Zahran, M. Kilany, Facile microwave-assisted synthesis of Te-doped hydroxyapatite nanorods and nanosheets and their characterizations for bone cement applications, Mater. Sci. Eng. C 72 (2017) 472–480, doi:10.1016/j.msec.2016.11.074.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る