リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Minimal residual disease detected by droplet digital PCR in peripheral blood stem cell grafts has a prognostic impact on high-risk neuroblastoma patients」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Minimal residual disease detected by droplet digital PCR in peripheral blood stem cell grafts has a prognostic impact on high-risk neuroblastoma patients

Nino, Nanako Ishida, Toshiaki Nakatani, Naoko Lin, Kyaw San Win, Kaung Htet Nay Mon, Cho Yee Nishimura, Akihiro Inoue, Shotaro Tamura, Akihiro Yamamoto, Nobuyuki Uemura, Suguru Saito, Atsuro Mori, Takeshi Hasegawa, Daiichiro Kosaka, Yoshiyuki Nozu, Kandai Nishimura, Noriyuki 神戸大学

2022.10

概要

More than half of high-risk neuroblastoma (NB) patients have experienced relapse due to the activation of chemoresistant minimal residual disease (MRD) even though they are treated by high-dose chemotherapy with autologous peripheral blood stem cell (PBSC) transplantation. Although MRD in high-risk NB patients can be evaluated by quantitative PCR with several sets of neuroblastoma-associated mRNAs (NB-mRNAs), the prognostic significance of MRD in PBSC grafts (PBSC-MRD) is unclear. In the present study, we collected 20 PBSC grafts from 20 high-risk NB patients and evaluated PBSC-MRD detected by droplet digital PCR (ddPCR) with 7NB-mRNAs (CRMP1, DBH, DDC, GAP43, ISL1, PHOX2B, and TH mRNA). PBSC-MRD in 11 relapsed patients was significantly higher than that in 9 non-relapsed patients. Patients with a higher PBSC-MRD had a lower 3-year event-free survival (P = 0.0148). The present study suggests that PBSC-MRD detected by ddPCR with 7NB-mRNAs has a prognostic impact on high-risk NB patients.

この論文で使われている画像

関連論文

参考文献

[1] A. Furlan, V. Dyachuk, M.E. Kastriti, et al., Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla, Science 357 (2017), eaal3753.

[2] C. Delloye-Bourgeois, V. Castellani, Hijacking of embryonic programs by neural crest-derived neuroblastoma: from physiological migration to metastatic dissemination, Front. Mol. Neurosci. 12 (2019) 52.

[3] M. Ponzoni, T. Bachetti, M.V. Corrias, et al., Recent advances in the developmental origin of neuroblastoma: an overview, J. Exp. Clin. Cancer Res. 41 (2022) 92.

[4] G.M. Brodeur, Neuroblastoma: biological insights into a clinical enigma, Nat. Rev. Cancer 3 (2003) 203–216.

[5] J.M. Maris, M.D. Hogarty, R. Bagatell, S.L. Cohn, Neuroblastoma, Lancet 369 (2007) 2106–2120.

[6] N.R. Pinto, M.A. Applebaum, S.L. Volchenboum, et al., Advances in risk classification and treatment strategies for neuroblastoma, J. Clin. Oncol. 33 (2015) 3008–3017.

[7] V.P. Tolbert, K.K. Matthay, Neuroblastoma: clinical and biological approach to risk stratification and treatment, Cell Tissue Res. 372 (2018) 195–209.

[8] J.M. Maris, Recent advances in neuroblastoma, N. Engl. J. Med. 362 (2010) 2202–2211.

[9] S. Uemura, T. Ishida, K.K.M. Thwin, et al., Dynamics of minimal residual disease in neuroblastoma patients, Front. Oncol. 9 (2019) 455.

[10] D.A. Morgenstern, U. Potschger, L. Moreno, et al., Risk stratification of high-risk metastatic neuroblastoma: a report from the HR-NBL-1/SIOPEN study, Pediatr. Blood Cancer 65 (2018), e27363.

[11] W.B. London, V. Castel, T. Monclair, et al., Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the International Neuroblastoma Risk Group project, J. Clin. Oncol. 29 (2011) 3286–3292.

[12] K. Beiske, P.F. Ambros, S.A. Burchill, I.Y. Cheung, K. Swerts, Detecting minimal residual disease in neuroblastoma patients-the present state of the art, Cancer Lett. 228 (2005) 229–240.

[13] S.C. Brownhill, S.A. Burchill, PCR-based amplification of circulating RNAs as prognostic and predictive biomarkers - focus on neuroblastoma, Pract Lab Med 7 (2017) 41–44.

[14] J. Stutterheim, L. Zappeij-Kannegieter, R. Versteeg, H.N. Caron, C.E. van der Schoot, G.A. Tytgat, The prognostic value of fast molecular response of marrow disease in patients aged over 1 year with stage 4 neuroblastoma, Eur. J. Cancer 47 (2011) 1193–1202.

[15] V.F. Viprey, W.M. Gregory, M.V. Corrias, et al., Neuroblastoma mRNAs predict outcome in children with stage 4 neuroblastoma: a European HR-NBL1/SIOPEN study, J. Clin. Oncol. 32 (2014) 1074–1083.

[16] N.K. Cheung, I. Ostrovnaya, D. Kuk, I.Y. Cheung, Bone marrow minimal residual disease was an early response marker and a consistent independent predictor of survival after anti-GD2 immunotherapy, J. Clin. Oncol. 33 (2015) 755–763.

[17] A. Marachelian, J.G. Villablanca, C.W. Liu, et al., Expression of five neuroblastoma genes in bone marrow or blood of patients with relapsed/refractory neuroblastoma provides a new biomarker for disease and prognosis, Clin. Cancer Res. 23 (2017) 5374–5383.

[18] K.K.M. Thwin, T. Ishida, S. Uemura, et al., Level of seven neuroblastoma-associated mRNAs detected by droplet digital PCR is associated with tumor relapse/regrowth of high-risk neuroblastoma patients, J. Mol. Diagn. 22 (2020) 236–246.

[19] K.S. Lin, S. Uemura, K.K.M. Thwin, et al., Minimal residual disease in high-risk neuroblastoma shows a dynamic and disease burden-dependent correlation between bone marrow and peripheral blood, Transl. Oncol 14 (2021), 101019.

[20] S.A. Burchill, K. Beiske, H. Shimada, et al., Recommendations for the standardization of bone marrow disease assessment and reporting in children with neuroblastoma on behalf of the International Neuroblastoma Response Criteria Bone Marrow Working Group, Cancer 123 (2017) 1095–1105.

[21] S.G. Kreissman, R.C. Seeger, K.K. Matthay, et al., Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial, Lancet Oncol. 14 (2013) 999–1008.

[22] S.A. Burchill, S.E. Kinsey, S. Picton, et al., Minimal residual disease at the time of peripheral blood stem cell harvest in patients with advanced neuroblastoma, Med. Pediatr. Oncol. 36 (2001) 213–219.

[23] M.V. Corrias, R. Haupt, B. Carlini, et al., Peripheral blood stem cell tumor cell contamination and survival of neuroblastoma patients, Clin. Cancer Res. 12 (2006) 5680–5685.

[24] S. Avigad, G. Feinberg-Gorenshtein, D. Luria, et al., Minimal residual disease in peripheral blood stem cell harvests from high-risk neuroblastoma patients, J. Pediatr. Hematol. Oncol. 31 (2009) 22–26.

[25] F. Chambon, A. Tchirkov, B. Pereira, E. Rochette, F. Demeocq, J. Kanold, Molecular assessment of minimal residual disease in PBSC harvests provides prognostic information in neuroblastoma, Pediatr. Blood Cancer 60 (2013) E109–112.

[26] E.M. van Wezel, J. Stutterheim, F. Vree, et al., Minimal residual disease detection in autologous stem cell grafts from patients with high risk neuroblastoma, Pediatr. Blood Cancer 62 (2015) 1368–1373.

[27] E.M. van Wezel, L.M.J. van Zogchel, J. van Wijk, et al., Mesenchymal neuroblastoma cells are undetected by current mRNA marker panels: the development of a specific neuroblastoma mesenchymal minimal residual disease panel, JCO Prec. Oncol. 3 (2019) 1–11.

[28] W.H. Liang, S.M. Federico, W.B. London, et al., Tailoring therapy for children with neuroblastoma on the basis of risk group classification: past, present, and future, JCO Clin. Cancer Inform 4 (2020) 895–905.

[29] S.L. Cohn, A.D.J. Pearson, W.B. London, et al., The international neuroblastoma risk group (INRG) classification system: an INRG task force report, J. Clin. Oncol. 27 (2009) 289–297.

[30] T. Hishiki, K. Matsumoto, M. Ohira, et al., Results of a phase II trial for high-risk neuroblastoma treatment protocol JN-H-07: a report from the Japan Childhood Cancer Group Neuroblastoma Committee (JNBSG), Int. J. Clin. Oncol. 23 (2018) 965–973.

[31] S. Uemura, K.S. Lin, K.K. Mon Thwin, et al., Limited correlation between tumor markers and minimal residual disease detected by seven neuroblastoma-associated mRNAs in high-risk neuroblastoma patients, Mol Clin Oncol 15 (2021) 137.

[32] S.A. Bustin, V. Benes, J.A. Garson, et al., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem. 55 (2009) 611–622.

[33] J.F. Huggett, C.A. Foy, V. Benes, et al., The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments, Clin. Chem. 59 (2013) 892–902.

[34] A.K. Akobeng, Understanding diagnostic tests 3: receiver operating characteristic curves, Acta Paediatr. 96 (2007) 644–647.

[35] Y. Kanda, Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics, Bone Marr. Transp. 48 (2013) 452–458.

[36] V. Boeva, C. Louis-Brennetot, A. Peltier, et al., Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries, Nat. Genet. 49 (2017) 1408–1413.

[37] T. van Groningen, J. Koster, L.J. Valentijn, et al., Neuroblastoma is composed of two super-enhancer-associated differentiation states, Nat. Genet. 49 (2017) 1261–1266.

[38] M. Gautier, C. Thirant, O. Delattre, I. Janoueix-Lerosey, Plasticity in neuroblastoma cell identity defines a noradrenergic-to-mesenchymal transition (NMT), Cancers 13 (2021) 2904.

[39] S.A. Burchill, P.J. Selby, Molecular detection of low-level disease in patients with cancer, J. Pathol. 190 (2000) 6–14.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る