リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Retinoic acid receptor activity is required for the maintenance of type 1 innate lymphoid cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Retinoic acid receptor activity is required for the maintenance of type 1 innate lymphoid cells

Asahi, Takuma Abe, Shinya Tajika, Yuya Rodewald, Hans-Reimer Sexl, Veronika Takeshima, Hiroshi Ikuta, Koichi 京都大学 DOI:10.1093/intimm/dxac057

2023.03

概要

Group 1 innate lymphoid cells (G1-ILCs) are innate immune effectors critical for the response to intracellular pathogens and tumors. G1-ILCs comprise circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s). ILC1s mainly reside in barrier tissues and provide the initial sources of interferon-γ (IFN-γ) to prime the protecting responses against infections, which are followed by the response of recruited NK cells. Despite such distribution differences, whether local environmental factors influence the behavior of NK cells and ILC1s is unclear. Here, we show that the signaling of retinoic acid (RA), active metabolites of vitamin A, is essential for the maintenance of ILC1s in the periphery. Mice expressing RARα403, a truncated form of retinoic acid receptor α (RARα) that exerts dominant negative activity, in a lymphoid cell- or G1-ILC-specific manner showed remarkable reductions of peripheral ILC1s while NK cells were unaffected. Lymphoid cell-specific inhibition of RAR activity resulted in the reduction of PD-1+ ILC progenitors (ILCPs), but not of common lymphoid progenitors (CLPs), suggesting the impaired commitment and differentiation of ILC1s. Transcriptome analysis revealed that RARα403-expressing ILC1s exhibited impaired proliferative states and declined expression of effector molecules. Thus, our findings demonstrate that cell-intrinsic RA signaling is required for the homeostasis and the functionality of ILC1s, which may present RA as critical environmental cue targeting local type 1 immunity against infection and cancer.

この論文で使われている画像

参考文献

Fuchs, A. 2016. ILC1s in tissue inflammation and infection. Front. Immunol. 7:104.

Heymann, F. and Tacke, F. 2016. Immunology in the liver--from homeostasis to

disease. Nat. Rev. Gastroenterol. Hepatol. 13:88.

Artis, D. and Spits, H. 2015. The biology of innate lymphoid cells. Nature 517:293.

Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., Koyasu,

S., Locksley, R. M., Mckenzie, A. N. J., Mebius, R. E., Powrie, F., and Spits, H. 2018.

Innate lymphoid cells: 10 years on. Cell 174:1054.

Peng, H., Jiang, X., Chen, Y., Sojka, D. K., Wei, H., Gao, X., Sun, R., Yokoyama, W.

M., and Tian, Z. 2013. Liver-resident NK cells confer adaptive immunity in skincontact inflammation. J. Clin. Invest. 123:1444.

Daussy, C., Faure, F., Mayol, K., Viel, S., Gasteiger, G., Charrier, E., Bienvenu, J.,

Henry, T., Debien, E., Hasan, U. A., Marvel, J., Yoh, K., Takahashi, S., Prinz, I., de

Bernard, S., Buffat, L., and Walzer, T. 2014. T-bet and Eomes instruct the development

of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp.

Med. 211:563.

Sojka, D. K., Plougastel-Douglas, B., Yang, L., Pak-Wittel, M. A., Artyomov, M. N.,

Ivanova, Y., Zhong, C., Chase, J. M., Rothman, P. B., Yu, J., Riley, J. K., Zhu, J., Tian,

Z., and Yokoyama, W. M. 2014. Tissue-resident natural killer (NK) cells are cell

lineages distinct from thymic and conventional splenic NK cells. Elife 3:e01659.

Constantinides, M. G., McDonald, B. D., Verhoef, P. A., and Bendelac, A. 2014. A

committed precursor to innate lymphoid cells. Nature 508:397.

Klose, C. S. N., Flach, M., Möhle, L., Rogell, L., Hoyler, T., Ebert, K., Fabiunke, C.,

Pfeifer, D., Sexl, V., Fonseca-Pereira, D., Domingues, R. G., Veiga-Fernandes, H.,

Arnold, S. J., Busslinger, M., Dunay, I. R., Tanriver, Y., and Diefenbach, A. 2014.

Differentiation of type 1 ILCs from a common progenitor to all helper-like innate

lymphoid cell lineages. Cell 157:340.

10

Constantinides, M. G., Gudjonson, H., McDonald, B. D., Ishizuka, I. E., Verhoef, P. A.,

Dinner, A. R., and Bendelac, A. 2015. PLZF expression maps the early stages of ILC1

lineage development. Proc. Natl. Acad. Sci. USA. 112:5123.

11

Weizman, O. E., Adams, N. M., Schuster, I. S., Krishna, C., Pritykin, Y., Lau, C.,

Degli-Esposti, M. A., Leslie, C. S., Sun, J. C., and O'Sullivan, T. E. 2017. ILC1 confer

early host protection at initial sites of viral infection. Cell 171:795.

12

Nabekura, T., Riggan, L., Hildreth, A. D., O'Sullivan, T. E., and Shibuya, A. 2020.

Type 1 innate lymphoid cells protect mice from acute liver injury via interferon-γ

secretion for upregulating Bcl-xL expression in hepatocytes. Immunity 52:96.

13

Nabekura, T. and Shibuya, A. 2021. Type 1 innate lymphoid cells: Soldiers at the front

line of immunity. Biomedical. Journal. 44:115.

14

McFarland, A. P., Yalin, A., Wang, S. Y., Cortez, V. S., Landsberger, T., Sudan, R.,

Peng, V., Miller, H. L., Ricci, B., David, E., Faccio, R., Amit, I., and Colonna, M.

2021. Multi-tissue single-cell analysis deconstructs the complex programs of mouse

natural killer and type 1 innate lymphoid cells in tissues and circulation. Immunity

54:1320.

15

Cortez, V. S. and Colonna, M. 2016. Diversity and function of group 1 innate

lymphoid cells. Immunol. Lett. 179:19.

16

Erkelens, M. N. and Mebius, R. E. 2017. Retinoic acid and immune homeostasis: a

balancing act. Trends Immunol. 38:168.

17

Ghyselinck, N. B. and Duester, G. 2019. Retinoic acid signaling pathways.

Development 146:dev167502.

18

Semba, R. D. 1994. Vitamin A, immunity, and infection. Clin. Infect. Dis. 19:489.

19

Stephensen, C. B. 2001. Vitamin A, infection, and immune function. Annu. Rev. Nutr.

21:167.

20

Maruya, M., Suzuki, K., Fujimoto, H., Miyajima, M., Kanagawa, O., Wakayama, T.,

and Fagarasan, S. 2011. Vitamin A-dependent transcriptional activation of the nuclear

factor of activated T cells c1 (NFATc1) is critical for the development and survival of

B1 cells. Proc. Natl. Acad. Sci. USA. 108:722.

21

Mielke, L. A., Jones, S. A., Raverdeau, M., Higgs, R., Stefanska, A., Groom, J. R.,

Misiak, A., Dungan, L. S., Sutton, C. E., Streubel, G., Bracken, A. P., and Mills, K. H.

2013. Retinoic acid expression associates with enhanced IL-22 production by γδ T

cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med.

210:1117.

22

Schwartz, D. M., Farley, T. K., Richoz, N., Yao, C., Shih, H. Y., Petermann, F., Zhang,

Y., Sun, H. W., Hayes, E., Mikami, Y., Jiang, K., Davis, F. P., Kanno, Y., Milner, J. D.,

Siegel, R., Laurence, A., Meylan, F., and O'Shea, J. J. 2019. Retinoic acid receptor

alpha represses a Th9 transcriptional and epigenomic program to reduce allergic

pathology. Immunity 50:106.

23

Van De Pavert, S. A., Ferreira, M., Domingues, R. G., Ribeiro, H., Molenaar, R.,

Moreira-Santos, L., Almeida, F. F., Ibiza, S., Barbosa, I., Goverse, G., Labão-Almeida,

C., Godinho-Silva, C., Konijn, T., Schooneman, D., O’Toole, T., Mizee, M. R., Habani,

Y., Haak, E., Santori, F. R., Littman, D. R., Schulte-Merker, S., Dzierzak, E., Simas, J.

P., Mebius, R. E., and Veiga-Fernandes, H. 2014. Maternal retinoids control type 3

innate lymphoid cells and set the offspring immunity. Nature 508:123.

24

Kim, C. H. 2018. Control of innate and adaptive lymphocytes by the RAR-retinoic

acid axis. Immune Netw. 18:e1.

25

Kim, M. H., Taparowsky, E. J., and Kim, C. H. 2015. Retinoic acid differentially

regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43:107.

26

Goverse, G., Labao-Almeida, C., Ferreira, M., Molenaar, R., Wahlen, S., Konijn, T.,

Koning, J., Veiga-Fernandes, H., and Mebius, R. E. 2016. Vitamin A controls the

10

presence of RORγ+ innate lymphoid cells and lymphoid tissue in the small intestine. J.

Immunol. 196:5148.

27

Spencer, S. P., Wilhelm, C., Yang, Q., Hall, J. A., Bouladoux, N., Boyd, A., Nutman, T.

B., Urban, J. F., Wang, J., Ramalingam, T. R., Bhandoola, A., Wynn, T. A., and

Belkaid, Y. 2014. Adaptation of innate lymphoid cells to a micronutrient deficiency

promotes type 2 barrier immunity. Science 343:432.

28

Tsai, S., Bartelmez, S., Heyman, R., Damm, K., Evans, R., and Collins, S. J. 1992. A

mutated retinoic acid receptor-alpha exhibiting dominant-negative activity alters the

lineage development of a multipotent hematopoietic cell line. Genes Dev. 6:2258.

29

Rosselot, C., Spraggon, L., Chia, I., Batourina, E., Riccio, P., Lu, B., Niederreither, K.,

Dolle, P., Duester, G., Chambon, P., Costantini, F., Gilbert, T., Molotkov, A., and

Mendelsohn, C. 2010. Non-cell-autonomous retinoid signaling is crucial for renal

development. Development 137:283.

30

Eckelhart, E., Warsch, W., Zebedin, E., Simma, O., Stoiber, D., Kolbe, T., Rülicke, T.,

Mueller, M., Casanova, E., and Sexl, V. 2011. A novel Ncr1-Cre mouse reveals the

essential role of STAT5 for NK-cell survival and development. Blood 117:1565.

31

Schlenner, S. M., Madan, V., Busch, K., Tietz, A., Läufle, C., Costa, C., Blum, C.,

Fehling, H. J., and Rodewald, H. R. 2010. Fate mapping reveals separate origins of T

cells and myeloid lineages in the thymus. Immunity 32:426.

32

Chen, S., Zhou, Y., Chen, Y., and Gu, J. 2018. fastp: an ultra-fast all-in-one FASTQ

preprocessor. Bioinformatics 34:i884.

33

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O.,

Benner, C., and Chanda, S. K. 2019. Metascape provides a biologist-oriented resource

for the analysis of systems-level datasets. Nat. Commun. 10:1523.

34

Yu, Y., Tsang, J. C. H., Wang, C., Clare, S., Wang, J., Chen, X., Brandt, C., Kane, L.,

Campos, L. S., Lu, L., Belz, G. T., Mckenzie, A. N. J., Teichmann, S. A., Dougan, G.,

and Liu, P. 2016. Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines

its development pathway. Nature 539:102.

35

Wilhelm, C., Harrison, O. J., Schmitt, V., Pelletier, M., Spencer, S. P., Urban, J. F.,

Ploch, M., Ramalingam, T. R., Siegel, R. M., and Belkaid, Y. 2016. Critical role of

fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and

helminth infection. J. Exp. Med. 213:1409.

36

Attar, P. S., Wertz, P. W., McArthur, M., Imakado, S., Bickenbach, J. R., and Roop, D.

R. 1997. Inhibition of retinoid signaling in transgenic mice alters lipid processing and

disrupts epidermal barrier function. Mol. Endocrinol. 11:792.

37

Imakado, S., Bickenbach, J. R., Bundman, D. S., Rothnagel, J. A., Attar, P. S., Wang,

X. J., Walczak, V. R., Wisniewski, S., Pote, J., and Gordon, J. S. 1995. Targeting

expression of a dominant-negative retinoic acid receptor mutant in the epidermis of

transgenic mice results in loss of barrier function. Genes Dev. 9:317.

38

Maghazachi, A. A. 2010. Role of chemokines in the biology of natural killer cells.

11

Curr. Top. Microbiol. Immunol. 341:37.

39

Edwards, S. A., Darland, T., Sosnowski, R., Samuels, M., and Adamson, E. D. 1991.

The transcription factor, Egr-1, is rapidly modulated in response to retinoic acid in P19

embryonal carcinoma cells. Dev. Biol. 148:165.

40

Balmer, J. E. and Blomhoff, R. 2002. Gene expression regulation by retinoic acid. J.

Lipid. Res. 43:1773.

41

Suva, L. J., Ernst, M., and Rodan, G. A. 1991. Retinoic acid increases zif268 early

gene expression in rat preosteoblastic cells. Mol. Cell. Biol. 11:2503.

42

Cho, S. J., Kang, M. J., Homer, R. J., Kang, H. R., Zhang, X., Lee, P. J., Elias, J. A.,

and Lee, C. G. 2006. Role of early growth response-1 (Egr-1) in interleukin-13induced inflammation and remodeling. J. Biol. Chem. 281:8161.

43

Ramana, C. V. and Das, B. 2021. Regulation of early growth response-1 (Egr-1) gene

expression by Stat1-independent type I interferon signaling and respiratory viruses.

Comput. Math. Biophys. 9:289.

44

Yan, S. F., Fujita, T., Lu, J., Okada, K., Shan Zou, Y., Mackman, N., Pinsky, D. J., and

Stern, D. M. 2000. Egr-1, a master switch coordinating upregulation of divergent gene

families underlying ischemic stress. Nat. Med. 6:1355.

45

Sun, C. M., Hall, J. A., Blank, R. B., Bouladoux, N., Oukka, M., Mora, J. R., and

Belkaid, Y. 2007. Small intestine lamina propria dendritic cells promote de novo

generation of Foxp3 Treg cells via retinoic acid. J. Exp. Med. 204:1775.

46

Okabe, Y. and Medzhitov, R. 2014. Tissue-specific signals control reversible program

of localization and functional polarization of macrophages. Cell 157:832.

47

Dunham, R. M., Thapa, M., Velazquez, V. M., Elrod, E. J., Denning, T. L., Pulendran,

B., and Grakoui, A. 2013. Hepatic stellate cells preferentially induce Foxp3+

regulatory T cells by production of retinoic acid. J. Immunol. 190:2009.

48

Neumann, K., Kruse, N., Szilagyi, B., Erben, U., Rudolph, C., Flach, A., Zeitz, M.,

Hamann, A., and Klugewitz, K. 2012. Connecting liver and gut: murine liver

sinusoidal endothelium induces gut tropism of CD4+ T cells via retinoic acid.

Hepatology 55:1976.

49

Lin, M., Zhang, M., Abraham, M., Smith, S. M., and Napoli, J. L. 2003. Mouse retinal

dehydrogenase 4 (RALDH4), molecular cloning, cellular expression, and activity in 9cis-retinoic acid biosynthesis in intact cells. J. Biol. Chem. 278:9856.

12

Figure legends

Fig. 1. Lymphoid cell-specific inhibition of RAR activity depletes ILC1s but not NK cells.

(A–G) Flow cytometric (FCM) analysis of liver and mLN lymphocytes in Rosa26RARa403/+ mice, Il7r-CreWT mice, or Il7r-CreRARa403 mice. Representative FCM profiles in

the liver (A) and mLNs (B), the percentages (upper) and the cell numbers (lower) of T cells

(C), B cells (D), NK cells (E), ILC1s (F), and NKT cells (G) in indicated tissues are shown.

Data represent two to three independent experiments (n = 4–6). Data are presented as mean ±

SEM. *p < 0.05, **p < 0.01, ****p < 0.0001.

Fig. 2. RA signaling is required for development of ILCPs.

(A–D) FCM analysis of CLPs, ILCPs, ILC3s, and ILC2s in Il7r-CreWT (control) or Il7rCreRARa403 mice. Representative FCM profiles in BM (A) and the percentages (upper) and the

cell numbers (lower) of CLPs and ILCPs (B), ILC3s (C), and ILC2s (D) in indicated tissues

are shown. Data represent two to three independent experiments (n = 3–6). Data are presented

as mean ± SEM. *p < 0.05, **p < 0.01, ****p < 0.0001.

Fig. 3. Cell-intrinsic RAR activity is required for maintenance of peripheral ILC1s.

(A–D) FCM analysis of liver and mLN lymphocytes in Ncr1-CreWT or Ncr1-CreRARa403 mice.

Representative FCM profiles in the liver (A), the percentages of T cells and NKT cells (B),

and the percentages (upper) and the cell numbers (lower) of NK cells (C) and ILC1s (D) in

the liver and mLNs are shown. Data represent two to three independent experiments (n = 3–5).

Data are presented as mean ± SEM. *p < 0.05.

Fig. 4. RA signaling supports the proliferative and functional statuses in ILC1s.

(A) Number of genes significantly upregulated (blue; up-DEGs) and downregulated (red;

down-DEGs) in each cell population of Ncr1-CreRARa403 mice compared to Ncr1-CreWT mice

are shown. (B and C) Dot plots showing the enriched pathways on down-DEGs of liver (B)

and spleen (C) ILC1s. Genes count indicates the number of DEGs included in the pathway.

Gene ratio is the ratio of genes count to the total gene number in the pathway. (D) Heatmap

representing normalized expression levels of the genes related to cell cycle in liver ILC1s

from Ncr1-CreWT (control) or Ncr1-CreRARa403 mice followed by range scaling. (E)

Normalized read counts of Mki67 (padj = 0.254) expressed in liver ILC1s from control or

Ncr1-CreRARa403 mice. (F–H) FCM analysis of proliferation and survival marker expression in

liver NK cells and ILC1s of Ncr1-CreWT or Ncr1-CreRARa403 mice. The percentages of Ki-67+

cells (F), MFI levels of Bcl-2 (G), and the percentages of Annexin V+ cells (H) are shown. (I)

Normalized read counts of Ccl3 (padj = 0.013), Ccl4 (padj = 0.203), and Xcl1 (padj = 0.078)

expressed on liver ILC1s from control or Ncr1-CreRARa403 mice. (J) Venn diagram showing

the overlap between down-DEGs of liver and spleen ILC1s. Data represent two independent

experiments (F–H; n = 4–5) or are from RNA-seq experiments with three biological replicates

(A–E, I, and J). Data are presented as mean ± SEM. *p < 0.05.

13

Supplementary figure legends

Supplementary Figure S1. Transcriptome analysis of G1-ILCs in Ncr1-CreRARa403 mice

(A) IL-7R expression of liver (upper) and spleen (lower) CD49a+CD49b− G1-ILCs in Ncr1CreWT or Ncr1-CreRARa403 mice. (B) Volcano plots showing gene expression of each G1-ILC

population in Ncr1-CreWT (control) mice relative to that in Ncr1-CreRARa403 mice. Genes

significantly downregulated (red; down-DEGs) or upregulated (blue; up-DEGs) in each cell

population of Ncr1-CreRARa403 mice are highlighted. padj, adjusted p value. FC, fold change.

Data represent three (liver) and one (spleen) experiments (A) or are from RNA-seq

experiments with three biological replicates (B).

14

Figure 1

Liver PI–

live cells

R26RAR 403

NKT

CD49a

NK1.1

7.25

NKp46

97.1

22.2

ILC1

mLN CD3–

NK1.1+NKp46+

G1-ILC

NK

4.35

97.3

5.32

97.3

CD49a

25.4

Il7r-Cre WT

403

CD3

20

20

n.s.

15

****

0.04

**

0.02

0.5

0.01

**

0.8

0.6

0.4

0.2

10

0.0

n.s.

n.s.

mLN

0.4

n.s.

0.3

0.2

0.1

0.0

15

n.s.

n.s.

10

NKT

20

**

15

mLN

0.3

60

40

Il7r-Cre RAR

0.1

80

Il7r-Cre WT

0.2

10

0.0

NK

Liver

0.00

0.0

20

mLN

0.03

1.0

30

CD49b

Liver

n.s.

ILC1

Liver

Frequency (%)

n.s.

10

1.5

40

Frequency (%)

50

Cell number (×10⁴)

n.s.

40

mLN

Frequency (%)

80

60

40

Cell number (×10⁶)

mLN

Cell number (×10⁴)

Frequency (%)

Liver

CD49b

Cell number (×10⁴)

n.s.

CD3

Cell number (×106)

60

0.67

0.69

Frequency (%)

Il7r-Cre RAR

8.45

20

n.s.

403

Figure 2

0.33

4 7

CD25

IL-7R

BM PI–

live cells

ILC2 18.0

ILCP 11.2

CLP

55.1

Il7r-Cre WT

24.0

0.37

Il7r-Cre RAR

8.91

2.71

53.3

403

33.5

Lin

BM

0.4

0.2

0.010

0.3

0.2

0.005

0.1

0.000

0.0

Cell number (×10⁴)

0.015

p = 0.091

0.25

p = 0.085

0.15

0.10

0.05

0.00

Il7r-Cre WT

0.1

Il7r-Cre RAR

403

BM

mLN

ILC2

ILC2

****

0.06

0.15

**

0.10

0.04

0.05

0.02

0.00

0.20

0.08

n.s.

Frequency (%)

p = 0.064

ILC3

Cell number (×10⁴)

Frequency (%)

0.5

ILCP

Frequency (%)

CLP

mLN

PD-1

Cell number (×10⁴)

FLT3

1.5

0.00

**

1.0

0.5

0.0

Figure 3

Liver PI–

live cells

Ncr1-Cre WT

93.6

Liver

21.0

Frequency (%)

2.56

CD49a

4.60

21.7

3.14

Ncr1-Cre RAR

NKp46

NK1.1

7.73

93.5

40

65

30

60

20

55

10

50

45

NKT

3.16

403

mLN

Liver

mLN

CD3

n.s.

0.25

0.15

0.10

0.05

0.00

15

10

n.s.

Liver

n.s.

0.20

n.s.

CD49b

ILC1

mLN

Frequency (%)

Frequency (%)

Liver

Cell number (×10⁴)

NK

Cell number (×10⁴)

CD3

1.0

mLN

0.05

0.8

0.04

0.6

0.03

0.4

0.02

0.2

0.01

0.0

0.00

0.8

0.6

0.4

0.2

0.0

Frequency (%)

19.3

25

20

15

10

n.s.

0.6

0.4

0.2

0.0

n.s.

Ncr1-Cre WT

Ncr1-Cre RAR

n.s.

403

Figure 4

Liver NK

30

60

20

40

10

20

Ncr1-Cre WT

Ncr1-Cre RAR

n.s.

n.s.

MFI (×103)

NK

n.s.

40

20

20

cytokine-mediated

signaling pathway

2.6

3.0

3.00 3.25 3.50 3.75 4.00

Genes count

Gene ratio

Ccl4

Ccl3

n.s.

2.8

-(LogP)

ILC1

60

Spleen ILC1

neg. reg. of T cell

activation

Annexin V

Genes count

Gene ratio

403

reg. of leukocyte

proliferation

20

5.0 7.5 10.0 12.5

Bcl-2

-(LogP)

neg. reg. of cell projection

organization

ILC1

20

Normalized

read count (×102)

Frequency (%)

NK

10

ILC1

15

10

Mki67

n.s.

40

30

neg. reg. of cytokine

production

lymphocyte differentiation

NK

60

40

meiotic cell cycle

neg. reg. of protein

modification process

Ki-67

25

pos. reg. of interleukin-1

beta production

–1

80

cytokinesis

Down-DEG

20

Cdc20

Ncaph

Kif4

Cdk1

Cep55

Spc25

Ube2c

Nusap1

Stmn1

Bub1b

100

Reg. of APC/C activators

between G1/S and

early anaphase

reg. of cytokine production

Up-DEG

40

Control RAR 403

Liver ILC1

mitotic cell cycle process

60

Normalized

read count (×102)

80

Spleen ILC1

Liver ILC1

40

Frequency (%)

Number of DEGs

1.5

0.5

Xcl1

Egr1

Gimap7

Filip1l

Gimap6

Gimap4

51

37

Liver ILC1

Spleen ILC1

Supplementary Figure S1

CD49a + CD49b – G1-ILC

Ncr1-Cre WT

403

NK1.1

Liver

Ncr1-Cre RAR

Spleen

58.9

41.1

55.9

44.1

18.0

82.0

25.6

74.4

IL-7R

–log (padj)

Liver NK

Liver ILC1

Spleen ILC1

15

15

15

10

10

10

–10

–5

RAR 403

10

–10

–5

log (FC)

10

–10

–5

10

Control

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る