リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization of an active LINE-1 in the naked mole-rat genome.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization of an active LINE-1 in the naked mole-rat genome.

Yamaguchi, Shunichi Nohara, Shizuka Nishikawa, Yuki Suzuki, Yusuke Kawamura, Yoshimi Miura, Kyoko Tomonaga, Keizo Ueda, Keiji Honda, Tomoyuki 京都大学 DOI:10.1038/s41598-021-84962-8

2021.03.11

概要

Naked mole-rats (NMRs, Heterocephalus glaber) are the longest-living rodent species. A reason for their long lifespan is pronounced cancer resistance. Therefore, researchers believe that NMRs have unknown secrets of cancer resistance and seek to find them. Here, to reveal the secrets, we noticed a retrotransposon, long interspersed nuclear element 1 (L1). L1s can amplify themselves and are considered endogenous oncogenic mutagens. Since the NMR genome contains fewer L1-derived sequences than other mammalian genomes, we reasoned that the retrotransposition activity of L1s in the NMR genome is lower than those in other mammalian genomes. In this study, we successfully cloned an intact L1 from the NMR genome and named it NMR-L1. An L1 retrotransposition assay using the NMR-L1 reporter revealed that NMR-L1 was active retrotransposon, but its activity was lower than that of human and mouse L1s. Despite lower retrotrasposition activity, NMR-L1 was still capable of inducing cell senescence, a tumor-protective system. NMR-L1 required the 3' untranslated region (UTR) for retrotransposition, suggesting that NMR-L1 is a stringent-type of L1. We also confirmed the 5' UTR promoter activity of NMR-L1. Finally, we identified the G-quadruplex structure of the 3' UTR, which modulated the retrotransposition activity of NMR-L1. Taken together, the data indicate that NMR-L1 retrotranspose less efficiently, which may contribute to the cancer resistance of NMRs.

この論文で使われている画像

参考文献

1. Buffenstein, R. Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species.

J. Comp. Physiol. B 178, 439–445 (2008).

2. Cole, J. E., Steeil, J. C., Sarro, S. J., Kerns, K. L. & Cartoceti, A. Chordoma of the sacrum of an adult naked mole-rat. J. Vet. Diagn.

Invest. 32, 132–135 (2020).

3. Delaney, M. A. et al. Initial Case Reports of Cancer in Naked Mole-rats (Heterocephalus glaber). Vet. Pathol. 53, 691–696 (2016).

4. Taylor, K. R., Milone, N. A. & Rodriguez, C. E. Four Cases of Spontaneous neoplasia in the naked mole-rat (Heterocephalus glaber),

a putative cancer-resistant species. J. Gerontol. A. Biol. Sci. Med. Sci. 72, 38–43 (2017).

5. Edrey, Y. H., Hanes, M., Pinto, M., Mele, J. & Buffenstein, R. Successful aging and sustained good health in the naked mole rat: a

long-lived mammalian model for biogerontology and biomedical research. ILAR J. 52, 41–53 (2011).

6. Miyawaki, S. et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat. Commun. 7, 11471

(2016).

7. Kim, E. B. et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479, 223–227

(2011).

8. Ostertag, E. M. & Kazazian, H. H. Jr. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501–538 (2001).

9. Burns, K. H. & Boeke, J. D. Human transposon tectonics. Cell 149, 740–752 (2012).

10. Levin, H. L. & Moran, J. V. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12, 615–627

(2011).

Scientific Reports |

(2021) 11:5725 |

https://doi.org/10.1038/s41598-021-84962-8

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

11. Honda, T. Links between human LINE-1 retrotransposons and hepatitis virus-related hepatocellular carcinoma. Front. Chem. 4,

21 (2016).

12. Honda, T. Potential links between hepadnavirus and bornavirus sequences in the host genome and cancer. Front. Microbiol. 8,

2537 (2017).

13. Honda, T. & Rahman, M. Profiling of LINE-1-related genes in hepatocellular carcinoma. Int. J. Mol. Sci. 20, 645 (2019).

14. Beck, C. R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).

15. Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA 100,

5280–5285 (2003).

16. Cost, G. J., Feng, Q., Jacquier, A. & Boeke, J. D. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21,

5899–5910 (2002).

17. Nakayama, R., Ueno, Y., Ueda, K. & Honda, T. Latent infection with Kaposi’s sarcoma-associated herpesvirus enhances retrotransposition of long interspersed element-1. Oncogene 38, 4340–4351 (2019).

18. Xie, Y., Rosser, J. M., Thompson, T. L., Boeke, J. D. & An, W. Characterization of L1 retrotransposition with high-throughput

dual-luciferase assays. Nucl. Acids Res. 39, e16–e16 (2011).

19. Kulpa, D. A. & Moran, J. V. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol.

Biol. 13, 655–660 (2006).

20. Garcia-Perez, J. L. et al. Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells.

Nature 466, 769–773 (2010).

21. Farkash, E. A., Kao, G. D., Horman, S. R. & Prak, E. T. L. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucl. Acids Res. 34, 1196–1204 (2006).

22. Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework.

Nucl. Acids Res. 46, D260–D266 (2018).

23. Sahakyan, A. B., Murat, P., Mayer, C. & Balasubramanian, S. G-quadruplex structures within the 3′ UTR of LINE-1 elements

stimulate retrotransposition. Nat. Struct. Mol. Biol. 24, 243–247 (2017).

24. Ohtani, N., Mann, D. J. & Hara, E. Cellular senescence: its role in tumor suppression and aging. Cancer Sci. 100, 1 (2009).

25. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 1 (2019).

26. Salmon, A. B., Sadighi Akha, A. A., Buffenstein, R. & Miller, R. A. Fibroblasts from naked mole-rats are resistant to multiple forms

of cell injury, but sensitive to peroxide, ultraviolet light, and endoplasmic reticulum stress. J. Gerontol. A. Biol. Sci. Med. Sci. 63,

232–241 (2008).

27. Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nat.

Rev. Genet. 13, 770–780 (2012).

28. Kajikawa, M., Ichiyanagi, K., Tanaka, N. & Okada, N. Isolation and characterization of active LINE and SINEs from the Eel. Mol.

Biol. Evol. 22, 673–682 (2005).

29. DeBerardinis, R. J. & Kazazian, H. H. Analysis of the promoter from an expanding mouse retrotransposon subfamily. Genomics

56, 317–323 (1999).

30. Taoudi, S. et al. ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic

specification. Genes Dev. 25, 251–262 (2011).

31. Ringvold, H. C. & Khalil, R. A. Protein kinase C as regulator of vascular smooth muscle function and potential target in vascular

disorders. Adv. Pharmacol. 78, 203–301 (2017).

32. Nishikawa, Y. et al. Inhibition of LINE-1 retrotransposition by capsaicin. Int. J. Mol. Sci. 19, 3243 (2018).

33. Nakamura, Y. et al. Isolation of Borna Disease Virus from Human Brain Tissue. J. Virol. 74, 4601–4611 (2000).

Acknowledgements

This study was supported in part by JSPS KAKENHI Grant Numbers JP15K08496, JP18H02664, and JP18K19449,

grants from the Takeda Science Foundation, Senri Life Science Foundation, and the Joint Usage/Research Center

Program of Institute for Frontier Life and Medical Sciences, Kyoto University. (T.H.). S.Y. and Y.N. are supported

by the Osaka University Medical Doctor Scientist Training Program.

Author contributions

S.Y., S.N., Y.N. and T.H. conducted the experiments; S.Y., S.N., K.T., K.U. and T.H. analyzed the data; Y.S., Y.K.,

and K.M. established NMR cells; T.H. conceived and designed the study; Y.K. and T.H. wrote the paper.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https​://doi.

org/10.1038/s4159​8-021-84962​-8.

Correspondence and requests for materials should be addressed to T.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

Scientific Reports |

Vol:.(1234567890)

(2021) 11:5725 |

https://doi.org/10.1038/s41598-021-84962-8

...

参考文献をもっと見る