リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Novel and Natural Feed Additive for Ruminants The Impacts on Behavior, Rumen Fermentation and Microbiome with special reference to Methane Emissions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Novel and Natural Feed Additive for Ruminants The Impacts on Behavior, Rumen Fermentation and Microbiome with special reference to Methane Emissions

Eslam Khalifa Hassan Ahmed 帯広畜産大学

2022.09.02

概要

The animal production industry is a significant source of GHGs. Ruminants represent the source of approximately 80% of the total GHG emissions from that sector. The most important greenhouse gas is CH4. The production of CH4 is formed mainly by enteric fermentation in the rumen. Emitted CH4 represents up to a 15% loss of feed energy. Numerous CH4 mitigation technologies have been investigated, with promising findings from dietary interventions. However, most of these strategies have only been investigated in vitro without being confirmed in vivo in addition to the adverse effects of some approaches on animal performance, rumen fermentation and behavior. Therefore, the main aim of this thesis was to provide a comprehensive evaluation of one of the novel and promising strategies (Mootral,a garlic and citrus extract) to mitigate CH4 missions from ruminants through in vitro and in vivo applications.

 In Chapter 1,the first study was performed to understand MootraPs mode of action and to investigate its impacts on gas production, fermentation profile, and rumen microbiome. The experiment was a 24-h small-scale in vitro trial using rumen fluid collected from sheep. Mootral was supplemented in two dosages,10% and 20% of the substrate (50% grass: 50% concentrate). Mootral impacts showed a dose-dependent effect on the investigated parameters. Supplementation with mootral led to increased production of total gas and total volatile fatty acids. Mootral supplementation reduced the proportion of CH4 in the produced gas by 22% and 54% for 10 and 20% Mootral, respectively. The fermentation profile was shifted toward more propionate and less acetate due to the addition of Mootral. The bacterial community showed an increase in the relative abundance of the Prevotellaceae family and Veillonellaceae family, while there was a decrease in the relative abundance of some hydrogen-producing bacteria by Mootral supplementation. The alteration in the archaeal community due to Mootral was obvious, where the Methanobacteriaceae family decreased and the Methanomassiliicoccaceae family increased in a dose-dependent manner. Thus, this preliminary study showed the ability of this novel combination to alter the rumen fermentation profile and reduce microbial groups associated with CH4 production, indicating the potential of this promising natural mixture to mitigate CH4 emissions from ruminants.

 The aforementioned in vitro findings were further evaluated through an in vivo trial conducted in sheep, as described in Chapter 2, to confirm the potential of this new combination. The aim of this study was to determine the optimal effective dosage of Mootral for reducing CH4 production while considering its impact on behavior, rumen fermentation characteristics, digestibility, and growth performance. The experiment was carried out using the same feeding style applied in vitro, while Mootral was evaluated at three dosages:1,5, and 10 g/kg DM, mixed thoroughly with concentrates and supplemented once daily in the morning feeding. The experimental design was a 4 χ 4 しatin square design in which sheep were kept in individual metabolic cages. Mootral supplementation at all dosages had no adverse impact on feed intake, health status, growth performance, rumen fermentation, or nutrient digestibility. Mootral showed a dose-dependent manner in reducing CH4 production yield per digestible DM intake up to 12.8% with the highest dosage. The results of this study also indicated that Mootral supplementation improved animal welfare by reducing the incidence of abnormal behaviors. Therefore, it can be concluded that the natural combination of garlic and citrus has the potential to reduce CH4 emissions without any negative effects on animal health or behavior.

 The experiment described in Chapter 3 was performed to investigate MootraPs potential to reduce CH4 production across different kinds of feeding styles (forage:concentrate ratios) in a different ruminant model: cows. The experiment was conducted as a batch culture for 24 h with rumen fluid collected from Holstein cows. Five experimental diets (forage:concentrate) were used: 100:0, 80:20, 60:40, 40:60, and 20:80. Mootral was supplemented at 200 g/kg of the substrate, which was selected based on the effective dosage from the first in vitro trial (Chapter 1).Each treatment had 6 replicates, and the experiment was repeated in three consecutive runs. The results of this trial confirmed the ability of Mootral to effectively reduce CH4 production for all tested feeding styles. The reduction potential per digestible DM was 44% in the high forage diet, and this reduction power increased with the inclusion of concentrate in the diet to reach up to 69% in the high concentrate diet. Mootral supplementation improved rumen fermentation by increasing the production of total volatile fatty acids and shifting the fermentation profile toward more propionate and less acetate. Additionally, Mootral had no adverse effects on nutrient digestibility. Thus, Mootral combination could work effectively as a CH4 inhibitor candidate in all feeding styles for ruminants.

この論文で使われている画像

参考文献

General Introduction

Baker, J.L., 2012. Climate change, disaster risk, and the urban poor: Cities building resilience for a changing world / Judy L. Baker, editor. World Bank, Washington, D.C.

Crozier, A., Clifford, M.N., Ashihara, H., 2006. Plant secondary metabolites: Occurrence, structure and role in the human diet. Blackwell, Oxford.

Durmic, Z., Blache, D., 2012. Bioactive plants and plant products: Effects on animal function, health and welfare. Anim Feed Sci Technol 176, 150–162. https://doi.org/10.1016/j.anifeedsci.2012.07.018.

FAO, 2016. Reducing enteric methane for improving food security and livelihoods. Food and Agriculture Organization of the United Nations. https://www.fao.org/in-action/enteric- methane/background/theroleofruminants/en/ (accessed 27 October 2021).

Gerber, P.J., Henderson, B., Makkar, H.P.S., 2013. Mitigation of greenhouse gas emissions in livestock production: A review of technical options for non-CO₂ emissions / editors, Pierre J. Gerber, Benjamin Henderson and Harinder P.S. Makkar. Food and Agriculture Organization of the United Nations, Rome.

Grossi, G., Goglio, P., Vitali, A., Williams, A.G., 2019. Livestock and climate change: impact of livestock on climate and mitigation strategies. Anim Front 9, 69–76. https://doi.org/10.1093/af/vfy034.

Honan, M., Feng, X., Tricarico, J.M., Kebreab, E., 2021. Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Anim Prod Sci. https://doi.org/10.1071/AN20295.

Hook, S.E., Wright, A.-D.G., McBride, B.W., 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea 2010, 945785. https://doi.org/10.1155/2010/945785. Kim, E.T., Kim, C.-H., Min, K.-S., Lee, S.S., 2012. Effects of plant extracts on microbial population, methane emission and ruminal fermentation characteristics in in vitro. Asian- Australas J Anim Sci 25, 806–811. https://doi.org/10.5713/ajas.2011.11447.

Klevenhusen, F., Zeitz, J.O., Duval, S., Kreuzer, M., Soliva, C.R., 2011. Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim Feed Sci Technol 166-167, 356–363. https://doi.org/10.1016/j.anifeedsci.2011.04.071.

Ku-Vera, J.C., Jiménez-Ocampo, R., Valencia-Salazar, S.S., Montoya-Flores, M.D., Molina- Botero, I.C., Arango, J., Gómez-Bravo, C.A., Aguilar-Pérez, C.F., Solorio-Sánchez, F.J., 2020. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front Vet Sci 7, 584. https://doi.org/10.3389/fvets.2020.00584.

Lashof, D.A., Ahuja, D.R., 1990. Relative contributions of greenhouse gas emissions to global warming. Nature 344, 529–531. https://doi.org/10.1038/344529a0.

Martínez-Fernández, G., Abecia, L., Martín-García, A.I., Ramos-Morales, E., Hervás, G., Molina- Alcaide, E., Yáñez-Ruiz, D.R., 2013. In vitro-in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats. Animal : an international journal of animal bioscience 7, 1925–1934. https://doi.org/10.1017/S1751731113001699.

McAllister, T.A., Beauchemin, K.A., Alazzeh, A.Y., Baah, J., Teather, R.M., Stanford, K., 2011. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can J Anim Sci 91, 193–211. https://doi.org/10.4141/cjas10047.

Min, B.R., Solaiman, S., Waldrip, H.M., Parker, D., Todd, R.W., Brauer, D., 2020. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Anim Nutr 6, 231–246. https://doi.org/10.1016/j.aninu.2020.05.002.

Opio, C., Gerber, P., Mottet, A., Falcucci, A., Tempio, G., MacLeod, M., Vellinga, T., Henderson, B., 2013. Greenhouse gas emission from ruminant supply chains. A global life cycle assessment.

Oskoueian, E., Abdullah, N., Oskoueian, A., 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed Res Int 2013, 349129. https://doi.org/10.1155/2013/349129.

Panthee, A., Matsuno, A., Al-Mamun, M., Sano, H., 2017. Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep. J Anim Sci Technol 59, 14. https://doi.org/10.1186/s40781-017-0139-3.

Patra, A., Park, T., Kim, M., Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol 8, 13. https://doi.org/10.1186/s40104-017-0145-9.

Pawar, M.M., Kamra, D.N., Agarwal, N., Chaudhary, L.C., 2014. Effects of essential oils on in vitro methanogenesis and feed fermentation with buffalo rumen liquor. Agric Res 3, 67–74. https://doi.org/10.1007/s40003-014-0092-z.

Reynolds, L.P., Wulster-Radcliffe, M.C., Aaron, D.K., Davis, T.A., 2015. Importance of animals in agricultural sustainability and food security. J Nutr 145, 1377–1379. https://doi.org/10.3945/jn.115.212217.

Ritchie, H., Roser, M., 2019. Meat and dairy production. Our world in data. https://ourworldindata.org/meat-production#meat-production-by-animal.

Sun, K., Liu, H., Fan, H., Liu, T., Zheng, C., 2021. Research progress on the application of feed additives in ruminal methane emission reduction: a review. PeerJ 9, e11151. https://doi.org/10.7717/peerj.11151.

Ugbogu, E.A., Elghandour, M.M., Ikpeazu, V.O., Buendía, G.R., Molina, O.M., Arunsi, U.O., Emmanuel, O., Salem, A.Z., 2019. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. J Clean Prod 213, 915– 925. https://doi.org/10.1016/j.jclepro.2018.12.233.

United Nations, 2017. World Population Prospects: The 2017 revision, key findings and advance tables. Working Paper No. ESA/P/WP/248. United Nations. Department of Economic and Social Affairs. https://esa.un.org/unpd/wpp/publications/files/wpp2017keyfindings.pdf.

Chapter One

Anassori, E., Dalir-Naghadeh, B., Pirmohammadi, R., Taghizadeh, A., Asri-Rezaei, S., Maham, M., Farahmand-Azar, S., Farhoomand, P., 2011. Garlic: A potential alternative for monensin as a rumen modifier. Livest Sci 142, 276–287. https://doi.org/10.1016/j.livsci.2011.08.003.

AOAC, 1995. Official Methods of Analysis. Association of Official Analytical Chemists. Arlington, VA, USA.

Balcells, J., Aris, A., Serrano, A., Seradj, A.R., Crespo, J., Devant, M., 2012. Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high- concentrate diets. J Anim Sci 90, 4975–4984. https://doi.org/10.2527/jas.2011-4955.

Belanche, A., La Fuente, G. de, Newbold, C.J., 2014. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol Ecol 90, 663–677. https://doi.org/10.1111/1574-6941.12423.

Busquet, M., Calsamiglia, S., Ferret, A., Cardozo, P.W., Kamel, C., 2005. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J Dairy Sci 88, 2508–2516. https://doi.org/10.3168/jds.S0022-0302(05)72928-3.

Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L., Ferret, A., 2007. Invited Review: Essential oils as modifiers of rumen microbial fermentation. J Dairy Sci 90, 2580–2595. https://doi.org/10.3168/jds.2006-644.

Chen, L., Shen, Y., Wang, C., Ding, L., Zhao, F., Wang, M., Fu, J., Wang, H., 2019. Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models. Front Microbiol 10, 162. https://doi.org/10.3389/fmicb.2019.00162.

Danielsson, R., Dicksved, J., Sun, L., Gonda, H., Müller, B., Schnürer, A., Bertilsson, J., 2017. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00226.

Danielsson, R., Schnürer, A., Arthurson, V., Bertilsson, J., 2012. methanogenic population and CH4 production in Swedish dairy cows fed different levels of forage. Appl Environ Microbiol 78, 6172–6179. https://doi.org/10.1128/AEM.00675-12.

Denman, S.E., Martinez Fernandez, G., Shinkai, T., Mitsumori, M., McSweeney, C.S., 2015. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analog. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.01087.

Deusch, S., Camarinha-Silva, A., Conrad, J., Beifuss, U., Rodehutscord, M., Seifert, J., 2017. A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Front Microbiol 8, 1605. https://doi.org/10.3389/fmicb.2017.01605.

Difford, G.F., Plichta, D.R., Løvendahl, P., Lassen, J., Noel, S.J., Højberg, O., Wright, A.-D.G., Zhu, Z., Kristensen, L., Nielsen, H.B., Guldbrandtsen, B., Sahana, G., 2018. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet 14, e1007580. https://doi.org/10.1371/journal.pgen.1007580.

Eger, M., Graz, M., Riede, S., Breves, G., 2018. Application of MootralTM reduces methane production by altering the archaea community in the rumen simulation technique. Front Microbiol 9, 2094. https://doi.org/10.3389/fmicb.2018.02094.

Elghandour, M.M.Y., Salem, M.Z.M., Greiner, R., Salem, A.Z.M., 2018. Effects of natural blends of garlic and eucalypt essential oils on biogas production of four fibrous feeds at short-term of incubation in the ruminal anaerobic biosystem. J Sci Food Agric 98, 5313–5321. https://doi.org/10.1002/jsfa.9070.

Finlay, B.J., Esteban, G., Clarke, K.J., Williams, A.G., Embley, T., Hirt, R.P., 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117, 157–161. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x.

Giang, N.T.T., Wanapat, M., Phesatcha, K., Kang, S., 2016. Level of Leucaena leucocephala silage feeding on intake, rumen fermentation, and nutrient digestibility in dairy steers. Trop Anim Health Prod 48, 1057–1064. https://doi.org/10.1007/s11250-016-1060-3.

Hansen, H., Nielsen, M., 2018. Impact of Mootral on rumen digestion. University of Copenhagen. https://ivh.ku.dk/nyheder/2018/impact-of-mootral-on-rumen-digestion/ (accessed accessed 31 August 2020).

Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Janssen, P.H., 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5. https://doi.org/10.1038/srep14567.

Hernandez, A., Kholif, A.E., Lugo-Coyote, R., Elghandour, M., Cipriano, M., Rodríguez, G.B., Odongo, N.E., Salem, A., 2017. The effect of garlic oil, xylanase enzyme and yeast on biomethane and carbon dioxide production from 60-d old Holstein dairy calves fed a high concentrate diet. J Clean Prod 142, 2384–2392. https://doi.org/10.1016/j.jclepro.2016.11.036.

Hobson, P.N., Stewart, C.S., 1997. The Rumen microbial ecosystem, 2nd ed. Blackie Academic & Professional, London, New York, 719 pp.

Janssen, P.H., Kirs, M., 2008. Structure of the archaeal community of the rumen. AEM 74, 3619– 3625. https://doi.org/10.1128/AEM.02812-07.

Jin, W., Cheng, Y., Zhu, W., 2017. The community structure of Methanomassiliicoccales in the rumen of Chinese goats and its response to a high-grain diet. J Animal Sci Biotechnol 8. https://doi.org/10.1186/s40104-017-0178-0.

Kawasaki, K., Min, X., Li, X., Hasegawa, E., Sakaguchi, E., 2015. Transfer of blood urea nitrogen to cecal microbial nitrogen is increased by fructo-oligosaccharide feeding in guinea pigs. Anim Sci J 86, 77–82. https://doi.org/10.1111/asj.12238.

Kittelmann, S., Pinares-Patiño, C.S., Seedorf, H., Kirk, M.R., Ganesh, S., McEwan, J.C., Janssen, P.H., 2014. Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS ONE 9, e103171. https://doi.org/10.1371/journal.pone.0103171.

Kongmun, P., Wanapat, M., Pakdee, P., Navanukraw, C., 2010. Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest Sci 127, 38–44. https://doi.org/10.1016/j.livsci.2009.08.008.

Ma, T., Chen, D., Tu, Y., Zhang, N., Si, B., Deng, K., Diao, Q., 2016. Effect of supplementation of allicin on methanogenesis and ruminal microbial flora in Dorper crossbred ewes. J Animal Sci Biotechnol 7. https://doi.org/10.1186/s40104-015-0057-5.

Matsui, H., Wakabayashi, H., Fukushima, N., Ito, K., Nishikawa, A., Yoshimi, R., Ogawa, Y., Yoneda, S., Ban-Tokuda, T., Wakita, M., 2013. Effect of raw rice bran supplementation on rumen methanogen population density and in vitro rumen fermentation. Grassl Sci 59, 129–134. https://doi.org/10.1111/grs.12023.

McDougall, E.I., 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem J 43, 99–109. https://doi.org/10.1042/bj0430099.

Oskoueian, E., Abdullah, N., Oskoueian, A., 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed Res Int 2013, 1–8. https://doi.org/10.1155/2013/349129.

Ozbayram, E., Ince, O., Ince, B., Harms, H., Kleinsteuber, S., 2018. Comparison of rumen and manure microbiomes and implications for the inoculation of anaerobic digesters. Microorganisms 6, 15. https://doi.org/10.3390/microorganisms6010015.

Patra, A.K., Kamra, D.N., Agarwal, N., 2006. Effect of spices on rumen fermentation, methanogenesis and protozoa counts in in vitro gas production test. Int Congr Ser 1293, 176–179. https://doi.org/10.1016/j.ics.2006.01.025.

Patra, A.K., Yu, Z., 2013. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresour Technol 148, 352–360. https://doi.org/10.1016/j.biortech.2013.08.140.

Patra, A.K., Yu, Z., 2015. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.01434.

Pelpolage, S.W., Goto, Y., Nagata, R., Fukuma, N., Furuta, T., Mizu, M., Han, K.-H., Fukushima, M., 2019. Colonic fermentation of water soluble fiber fraction extracted from sugarcane (Sacchurum officinarum L.) bagasse in murine models. Food Chem 292, 336–345. https://doi.org/10.1016/j.foodchem.2019.04.063.

Popova, M., Guyader, J., Silberberg, M., Seradj, A.R., Saro, C., Bernard, A., Gérard, C., Martin, C., Morgavi, D.P., 2018. Changes in the rumen microbiota of cows in response to dietary supplementation with nitrate, linseed, and saponin alone or in combination. Appl Environ Microbiol 85, e02657-18. https://doi.org/10.1128/AEM.02657-18.

Roque, B.M., van Lingen, H.J., Vrancken, H., Kebreab, E., 2019. Effect of Mootral—a garlic- and citrus-extract-based feed additive—on enteric methane emissions in feedlot cattle. Transl Anim Sci 3, 1383–1388. https://doi.org/10.1093/tas/txz133.

Seedorf, H., Kittelmann, S., Janssen, P.H., 2015. Few highly abundant operational taxonomic units dominate within rumen methanogenic archaeal species in New Zealand sheep and cattle. Appl Environ Microbiol 81, 986–995. https://doi.org/10.1128/AEM.03018-14.

Seradj, A.R., Abecia, L., Crespo, J., Villalba, D., Fondevila, M., Balcells, J., 2014. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim Feed Sci Technol 197, 85–91. https://doi.org/10.1016/j.anifeedsci.2014.08.013.

St-Pierre, B., Wright, A.-D.G., 2013. Diversity of gut methanogens in herbivorous animals. Animal 7, 49–56. https://doi.org/10.1017/S1751731112000912.

Tapio, I., Snelling, T.J., Strozzi, F., Wallace, R.J., 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. J Animal Sci Biotechnol 8. https://doi.org/10.1186/s40104-017-0141-0.

Ungerfeld, E.M., 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00037.

Veneman, J.B., Muetzel, S., Hart, K.J., Faulkner, C.L., Moorby, J.M., Perdok, H.B., Newbold, C.J., 2015. Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows? PLoS ONE 10, e0140282. https://doi.org/10.1371/journal.pone.0140282.

Wallace, R.J., Rooke, J.A., McKain, N., Duthie, C.-A., Hyslop, J.J., Ross, D.W., Waterhouse, A., Watson, M., Roehe, R., 2015. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics 16. https://doi.org/10.1186/s12864-015-2032-0.

Wanapat, M., Khejornsart, P., Pakdee, P., Wanapat, S., 2008. Effect of supplementation of garlic powder on rumen ecology and digestibility of nutrients in ruminants. J Sci Food Agric 88, 2231–2237. https://doi.org/10.1002/jsfa.3333.

Wang, K., Nan, X., Chu, K., Tong, J., Yang, L., Zheng, S., Zhao, G., Jiang, L., Xiong, B., 2018. Shifts of hydrogen metabolism from methanogenesis to propionate production in response to replacement of forage fiber with non-forage fiber sources in diets in vitro. Front Microbiol 9, 2764. https://doi.org/10.3389/fmicb.2018.02764.

Warren, F.J., Fukuma, N.M., Mikkelsen, D., Flanagan, B.M., Williams, B.A., Lisle, A.T., Ó Cuív, P., Morrison, M., Gidley, M.J., 2018. Food starch structure impacts gut microbiome composition. mSphere 3, e00086-18. https://doi.org/10.1128/mSphere.00086-18.

Wei, C., Guyader, J., Collazos, L., Beauchemin, K.A., Zhao, G.Y., 2019. Effects of gallic acid on in vitro rumen fermentation and methane production using rumen simulation (Rusitec) and batch-culture techniques. Anim Prod Sci 59, 277. https://doi.org/10.1071/AN17365.

Yang, W.Z., Benchaar, C., Ametaj, B.N., Chaves, A.V., He, M.L., McAllister, T.A., 2007. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J Dairy Sci 90, 5671–5681. https://doi.org/10.3168/jds.2007-0369.

Yu, Z., Morrison, M., 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 36, 808–812. https://doi.org/10.2144/04365ST04.

Chapter Two

Ahmed, E., Fukuma, N., Hanada, M., Nishida, T., 2021. The efficacy of plant-based bioactives supplementation to different proportion of concentrate diets on methane production and rumen fermentation characteristics in vitro. Animals 11 (4), 1029. https://doi.org/10.3390/ani11041029.

Altmann, J., 1974. Observational study of behavior: sampling methods. Behaviour 49 (3), 227–267. https://doi.org/10.1163/156853974x00534.

AOAC International, 1995. Official methods of analysis of AOAC International: Association of Official Analytical Chemists. AOAC International, Arlington Va.

Bacqué-Cazenave, J., Bharatiya, R., Barrière, G., Delbecque, J.-P., Bouguiyoud, N., Di Giovanni, G., Cattaert, D., Deurwaerdère, P. de, 2020. Serotonin in animal cognition and behavior. Int. J. Mol. Sci. 21 (5). https://doi.org/10.3390/ijms21051649.

Beauchemin, K.A., Ungerfeld, E.M., Eckard, R.J., Wang, M., 2020. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal 14 (S1), s2-s16. https://doi.org/10.1017/S1751731119003100.

Belanche, A., La Fuente, G. de, Newbold, C.J., 2014. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol. Ecol. 90 (3), 663– 677. https://doi.org/10.1111/1574-6941.12423.

Brouwer, E., 1965. Report of sub-committee on constants and factors. in: Blaxter, K.E. (Ed.), Proceedings of the Third Symposium on Energy Metabolism, EAAP, 11. Academic Press, London, pp. 441–443.

Busquet, M., Calsamiglia, S., Ferret, A., Cardozo, P.W., Kamel, C., 2005. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 88 (7), 2508–2516. https://doi.org/10.3168/jds.S0022-0302(05)72928-3. Cabezas-Garcia, E.H., Krizsan, S.J., Shingfield, K.J., Huhtanen, P., 2017. Between-cow variation in digestion and rumen fermentation variables associated with methane production. J. Dairy Sci. 100 (6), 4409–4424. https://doi.org/10.3168/jds.2016-12206.

Cattani, M., Maccarana, L., Rossi, G., Tagliapietra, F., Schiavon, S., Bailoni, L., 2016. Dose- response and inclusion effects of pure natural extracts and synthetic compounds on in vitro methane production. Anim. Feed Sci. Technol. 218, 100–109. https://doi.org/10.1016/j.anifeedsci.2016.05.014.

Chagas, J.C., Ramin, M., Krizsan, S.J., 2019. In vitro evaluation of different dietary methane mitigation strategies. Animals 9 (12). https://doi.org/10.3390/ani9121120.

Chaves, A.V., Stanford, K., Dugan, M., Gibson, L.L., McAllister, T.A., van Herk, F., Benchaar, C., 2008. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci. 117 (2-3), 215–224. https://doi.org/10.1016/j.livsci.2007.12.013.

Colgan, P.W., 1978. Quantitative ethology. Wiley, New York, Chichester.

Da Silva, C.S., Souza, E.J.O. de, Pereira, G.F.C., Cavalcante, E.O., Lima, E.I.M. de, Torres, T.R., Da Silva, J.R.C., Da Silva, D.C., 2017. Plant extracts as phytogenic additives considering intake, digestibility, and feeding behavior of sheep. Trop. Anim. Health Prod. 49 (2), 353–359. https://doi.org/10.1007/s11250-016-1199-y.

Devant, M., Penner, G.B., Marti, S., Quintana, B., Fábregas, F., Bach, A., Arís, A., 2016. Behavior and inflammation of the rumen and cecum in Holstein bulls fed high-concentrate diets with different concentrate presentation forms with or without straw supplementation. J. Anim. Sci. 94 (9), 3902–3917. https://doi.org/10.2527/jas.2016-0594.

Durmic, Z., Blache, D., 2012. Bioactive plants and plant products: Effects on animal function, health and welfare. Anim. Feed Sci. Technol. 176 (1-4), 150–162. https://doi.org/10.1016/j.anifeedsci.2012.07.018.

Eger, M., Graz, M., Riede, S., Breves, G., 2018. Application of MootralTM reduces methane production by altering the archaea community in the rumen simulation technique. Front. Microbiol. 9, 2094. https://doi.org/10.3389/fmicb.2018.02094.

Haagensen, A.M.J., Sørensen, D.B., Sandøe, P., Matthews, L.R., Birck, M.M., Fels, J.J., Astrup, A., 2014. High fat, low carbohydrate diet limit fear and aggression in Göttingen minipigs. PLoS One 9 (4), e93821. https://doi.org/10.1371/journal.pone.0093821.

Hristov, A.N., Oh, J., Giallongo, F., Frederick, T.W., Harper, M.T., Weeks, H.L., Branco, A.F., Moate, P.J., Deighton, M.H., Williams, S.R.O., Kindermann, M., Duval, S., 2015. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. U. S. A. 112 (34), 10663–10668. https://doi.org/10.1073/pnas.1504124112.

Jayanegara, A., Yogianto, Y., Wina, E., Sudarman, A., Kondo, M., Obitsu, T., Kreuzer, M., 2020. Combination effects of plant extracts rich in tannins and saponins as feed additives for mitigating in vitro ruminal methane and ammonia formation. Animals 10 (9). https://doi.org/10.3390/ani10091531.

Johnson, K.A., Johnson, D.E., 1995. Methane emissions from cattle. J. Anim. Sci. 73 (8), 2483– 2492. https://doi.org/10.2527/1995.7382483x.

Kaur, C., Kapoor, H.C., 2002. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 37 (2), 153–161. https://doi.org/10.1046/j.1365- 2621.2002.00552.x.

Kim, J.Y., Ghassemi Nejad, J., Park, J.Y., Lee, B.H., Hanada, M., Kim, B.W., Sung, K.I., 2018. In vivo evaluation of garlic (Allium sativum) supplementation to rice straw-based diet on mitigation of CH4 and CO2 emissions and blood profiles using crossbreed rams. J. Sci. Food Agric. 98 (14), 5197–5204. https://doi.org/10.1002/jsfa.9055.

Klevenhusen, F., Zeitz, J.O., Duval, S., Kreuzer, M., Soliva, C.R., 2011. Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim. Feed Sci. Technol. 166-167, 356–363. https://doi.org/10.1016/j.anifeedsci.2011.04.071.

Kraimi, N., Dawkins, M., Gebhardt-Henrich, S.G., Velge, P., Rychlik, I., Volf, J., Creach, P., Smith, A., Colles, F., Leterrier, C., 2019. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol. Behav. 210, 112658. https://doi.org/10.1016/j.physbeh.2019.112658.

Ley, J.P., Krammer, G., Kindel, G., Gatfield, I.-L., Müller, M., 2014. Use of hydroxyflavanones for masking bitter taste. Google Patents. https://patents.google.com/patent/US8685436B2/en.

Ma, T., Chen, D., Tu, Y., Zhang, N., Si, B., Deng, K., Diao, Q., 2016. Effect of supplementation of allicin on methanogenesis and ruminal microbial flora in Dorper crossbred ewes. J. Anim. Sci. Biotechnol. 7 (1), 1. https://doi.org/10.1186/s40104-015-0057-5.

Manchope, M.F., Casagrande, R., Verri, W.A., 2017. Naringenin: an analgesic and anti- inflammatory citrus flavanone. Oncotarget 8 (3), 3766–3767. https://doi.org/10.18632/oncotarget.14084.

Martinez-Fernandez, G., Denman, S.E., Yang, C., Cheung, J., Mitsumori, M., McSweeney, C.S., 2016. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Front. Microbiol. 7, 1122. https://doi.org/10.3389/fmicb.2016.01122.

Mason, G., Rushen, J., 2006. Stereotypic animal behaviour: Fundamentals and applications to welfare, 2nd ed. CABI, Wallingford.

Mitsumori, M., Shinkai, T., Takenaka, A., Enishi, O., Higuchi, K., Kobayashi, Y., Nonaka, I., Asanuma, N., Denman, S.E., McSweeney, C.S., 2012. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. Br. J. Nutr. 108 (3), 482–491. https://doi.org/10.1017/S0007114511005794.

Moss, A.R., Jouany, J.-P., Newbold, J., 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49 (3), 231–253. https://doi.org/10.1051/animres:2000119. Oskoueian, E., Abdullah, N., Oskoueian, A., 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Res. Int. 2013. https://doi.org/10.1155/2013/349129.

Paniagua, M., Crespo, J., Arís, A., Devant, M., 2019. Citrus aurantium flavonoid extract improves concentrate efficiency, animal behavior, and reduces rumen inflammation of Holstein bulls fed high-concentrate diets. Anim. Feed Sci. Technol. 258, 114304. https://doi.org/10.1016/j.anifeedsci.2019.114304.

Paniagua, M., Crespo, J., Bach, A., Devant, M., 2018. Effects of flavonoids extracted from Citrus aurantium on performance, eating and animal behavior, rumen health, and carcass quality in Holstein bulls fed high-concentrate diets. Anim. Feed Sci. Technol. 246, 114–126. https://doi.org/10.1016/j.anifeedsci.2018.08.010.

Panthee, A., Matsuno, A., Al-Mamun, M., Sano, H., 2017. Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep. J. Anim. Sci. Technol. 59 (1), 14. https://doi.org/10.1186/s40781-017-0139-3.

Patra, A., Park, T., Kim, M., Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8 (1), 13. https://doi.org/10.1186/s40104-017-0145-9.

Patra, A.K., 2010. Meta-analyses of effects of phytochemicals on digestibility and rumen fermentation characteristics associated with methanogenesis. J. Sci. Food Agric. 90 (15), 2700– 2708. https://doi.org/10.1002/jsfa.4143.

Patra, A.K., Kamra, D.N., Bhar, R., Kumar, R., Agarwal, N., 2011. Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep. J. Anim. Physiol. Anim. Nutr. 95 (2), 187–191. https://doi.org/10.1111/j.1439-0396.2010.01039.x.

Patra, A.K., Kamra. D, N., Agarwal, N., Chatterjee, P.N., 2007. Effect of Terminalia chebuaa and Allium sativum on rumen fermentation, enzyme activities and microbial profile in buffaloes. Indian J. Anim. Nutr. 24 (4), 251–255.

Pen, B., Takaura, K., Yamaguchi, S., Asa, R., Takahashi, J., 2007. Effects of Yucca schidigera and Quillaja saponaria with or without β 1–4 galacto-oligosaccharides on ruminal fermentation, methane production and nitrogen utilization in sheep. Anim. Feed Sci. Technol. 138 (1), 75–88. https://doi.org/10.1016/j.anifeedsci.2006.11.018.

Roque, B.M., van Lingen, H.J., Vrancken, H., Kebreab, E., 2019. Effect of Mootral—a garlic-and citrus-extract-based feed additive—on enteric methane emissions in feedlot cattle. Transl. Anim. Sci. 3 (4), 1383–1388. https://doi.org/10.1093/tas/txz133.

Strickland, V.J., Fisher, J.S., Potts, W.T., Hepworth, G.W., 2009. Lack of response to garlic fed at different dose rates for the control of Haemonchus contortus in Merino wether lambs. Anim. Prod. Sci. 49 (12), 1093. https://doi.org/10.1071/AN09057.

Takahashi, J., Chaudhry, A., Beneke, R., Young, B., 1999. An open-circuit hood system for gaseous exchange measurements in small ruminants. Small Ruminant Res. 32 (1), 31–36. https://doi.org/10.1016/S0921-4488(98)00163-1.

Ungerfeld, E.M., 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front. Microbiol. 6, 37. https://doi.org/10.3389/fmicb.2015.00037.

Veneman, J.B., Muetzel, S., Hart, K.J., Faulkner, C.L., Moorby, J.M., Perdok, H.B., Newbold, C.J., 2015. Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows? PLoS One 10 (10). https://doi.org/10.1371/journal.pone.0140282.

Vyas, D., McGinn, S.M., Duval, S.M., Kindermann, M.K., Beauchemin, K.A., 2018. Optimal dose of 3-nitrooxypropanol for decreasing enteric methane emissions from beef cattle fed high- forage and high-grain diets. Anim. Prod. Sci. 58 (6), 1049. https://doi.org/10.1071/AN15705.

Wanapat, M., Khejornsart, P., Pakdee, P., Wanapat, S., 2008. Effect of supplementation of garlic powder on rumen ecology and digestibility of nutrients in ruminants. J. Sci. Food Agric. 88 (13), 2231–2237. https://doi.org/10.1002/jsfa.3333.

Wang, C., Wang, S., Zhou, H., Glindemann, T., 2007. Effects of forage composition and growing season on methane emission from sheep in the Inner Mongolia steppe of China. Ecol. Res. 22 (1), 41–48. https://doi.org/10.1007/s11284-006-0191-9.

Wang, C.J., Wang, S.P., Zhou, H., 2009. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. Anim. Feed Sci. Technol. 148 (2-4), 157–166. https://doi.org/10.1016/j.anifeedsci.2008.03.008.

Yang, W.Z., Benchaar, C., Ametaj, B.N., Chaves, A.V., He, M.L., McAllister, T.A., 2007. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 90 (12), 5671–5681. https://doi.org/10.3168/jds.2007- 0369.

Zhu, Z., Mao, S., Zhu, W., 2012. Effects of ruminal infusion of garlic oil on fermentation dynamics, fatty acid profile and abundance of bacteria involved in biohydrogenation in rumen of goats. Asian Australas. J. Anim. Sci. 25 (7), 962–970. https://doi.org/10.5713/ajas.2011.11442.

Chapter Three

AOAC, 1995. Official methods of analysis, 16th edn. Arlington, VA: Association of Official Analytical Chemists.

Brede, J., Eger, M., Breves, G., 2019. Dose-dependent effects of a garlic-citrus powder on methane production and fermentation parameters of rumen microbial metabolism. International Symposium on Ruminant Physiology, September 3rd – 6th. Available online : https://m00tral.s3.amazonaws.com/Publications/Poster_ISRP_TiHo.pdf (accessed on 05 February 2021).

Busquet, M., Calsamiglia, S., Ferret, A., Cardozo, P.W., Kamel, C., 2005a. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J Dairy Sci 88, 2508–2516. https://doi.org/10.3168/jds.S0022-0302(05)72928-3.

Busquet, M., Calsamiglia, S., Ferret, A., Carro, M.D., Kamel, C., 2005b. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J Dairy Sci 88, 4393–4404. https://doi.org/10.3168/jds.S0022-0302(05)73126-X.

Chen, L., Shen, Y., Wang, C., Ding, L., Zhao, F., Wang, M., Fu, J., Wang, H., 2019. Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models. Front Microbiol 10, 162. https://doi.org/10.3389/fmicb.2019.00162.

Denman, S.E., Martinez Fernandez, G., Shinkai, T., Mitsumori, M., McSweeney, C.S., 2015. Metagenomic analysis of the rumen microbial community following inhibition of methane formation by a halogenated methane analog. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.01087.

Dey, A., Paul, S.S., Lailer, P.C., Dahiya, S.S., 2021. Reducing enteric methane production from buffalo (Bubalus bubalis) by garlic oil supplementation in in vitro rumen fermentation system. SN Appl Sci 3. https://doi.org/10.1007/s42452-021-04264-6.

Eger, M., Graz, M., Riede, S., Breves, G., 2018. Application of MootralTM reduces methane production by altering the archaea community in the rumen simulation technique. Front Microbiol 9, 2094. https://doi.org/10.3389/fmicb.2018.02094.

García-González, R., López, S., Fernández, M., Bodas, R., González, J.S., 2008. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Anim Feed Sci Technol 147, 36–52. https://doi.org/10.1016/j.anifeedsci.2007.09.008.

Hansen, H., Nielsen, M., 2018. Impact of Mootral on rumen digestion. University of Copenhagen. Available online: https://ivh.ku.dk/nyheder/2018/impact-of-mootral-on-rumen-digestion/ (accessed on accessed 05 February 2021).

Hassan, F.-U., Arshad, M.A., Li, M., Rehman, M.S.-U., Loor, J.J., Huang, J., 2020. Potential of Mulberry leaf biomass and its flavonoids to improve production and health in ruminants: Mechanistic insights and prospects. Animals 10. https://doi.org/10.3390/ani10112076.

Jafari, S., Ebrahimi, M., Goh, Y.M., Rajion, M.A., Jahromi, M.F., Al-Jumaili, W.S., 2019. Manipulation of rumen fermentation and methane gas production by plant secondary metabolites (saponin, tannin and essential oil) – A review of ten-year studies. Ann Anim Sci 19, 3–29. https://doi.org/10.2478/aoas-2018-0037.

Jayanegara, A., Yogianto, Y., Wina, E., Sudarman, A., Kondo, M., Obitsu, T., Kreuzer, M., 2020. Combination effects of plant extracts rich in tannins and saponins as feed additives for mitigating in vitro ruminal methane and ammonia formation. Animals 10. https://doi.org/10.3390/ani10091531.

Kaur, C., Kapoor, H.C., 2002. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Tech 37, 153–161. https://doi.org/10.1046/j.1365-2621.2002.00552.x.

Kawasaki, K., Min, X., Li, X., Hasegawa, E., Sakaguchi, E., 2015. Transfer of blood urea nitrogen to cecal microbial nitrogen is increased by fructo-oligosaccharide feeding in guinea pigs. Anim Sci J 86, 77–82. https://doi.org/10.1111/asj.12238.

Klevenhusen, F., Zeitz, J.O., Duval, S., Kreuzer, M., Soliva, C.R., 2011. Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim Feed Sci Technol 166-167, 356–363. https://doi.org/10.1016/j.anifeedsci.2011.04.071.

Lee, S.J., Lee, Y.J., Eom, J.S., Kim, H.S., Choi, Y.Y., Jo, S.U., Kang, S.N., Park, H.Y., Kim, D.H., Lee, S.S., 2020. Effects of the appropriate addition of antioxidants from Pinus densiflora and Mentha canadensis extracts on methane emission and rumen fermentation. Animals 10. https://doi.org/10.3390/ani10101888.

Levy, B., Jami, E., 2018. Exploring the prokaryotic community associated with the rumen ciliate protozoa population. Front Microbiol 9, 2526. https://doi.org/10.3389/fmicb.2018.02526.

Ma, T., Chen, D., Tu, Y., Zhang, N., Si, B., Deng, K., Diao, Q., 2016. Effect of supplementation of allicin on methanogenesis and ruminal microbial flora in Dorper crossbred ewes. J Animal Sci Biotechnol 7. https://doi.org/10.1186/s40104-015-0057-5.

Marcos, C.N., Carro, M.D., Fernández-Yepes, J.E., Arbesu, L., Molina-Alcaide, E., 2020. Utilization of Avocado and Mango fruit wastes in multi-nutrient blocks for goats feeding: in vitro evaluation. Animals 10. https://doi.org/10.3390/ani10122279.

McDOUGALL, E.I., 1948. The composition and output of sheep's saliva. Biochem J 43, 99–109.

Menke, K.H., Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analyses and gas production using rumen fluid. Anim Res Develop 28, 7–55.

Miron, T., Rabinkov, A., Mirelman, D., Wilchek, M., Weiner, L., 2000. The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta-Biomembr 1463, 20–30. https://doi.org/10.1016/S0005- 2736(99)00174-1.

Oskoueian, E., Abdullah, N., Oskoueian, A., 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed Res Int 2013, 1–8. https://doi.org/10.1155/2013/349129.

Patra, A., Park, T., Kim, M., Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Animal Sci Biotechnol 8. https://doi.org/10.1186/s40104-017-0145-9.

Patra, A.K., Yu, Z., 2015. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.01434.

Pers-Kamczyc, E., Zmora, P., Cieślak, A., Szumacher-Strabel, M., 2011. Development of nucleic acid based techniques and possibilities of their application to rumen microbial ecology research. J. Anim. Feed Sci. 20, 315–337. https://doi.org/10.22358/jafs/66189/2016.

Roque, B.M., van Lingen, H.J., Vrancken, H., Kebreab, E., 2019. Effect of Mootral—a garlic- and citrus-extract-based feed additive—on enteric methane emissions in feedlot cattle. Transl Anim Sci 3, 1383–1388. https://doi.org/10.1093/tas/txz133.

Seradj, A., Abecia, L., Crespo, J., Villalba, D., Fondevila, M., Balcells, J., 2014. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim Feed Sci Technol , v. 197, 85–91. https://doi.org/10.1016/j.anifeedsci.2014.08.013.

Suybeng, B., Charmley, E., Gardiner, C.P., Malau-Aduli, B.S., Malau-Aduli, A.E.O., 2020. Supplementing Northern Australian beef cattle with desmanthus tropical legume reduces in-vivo methane emissions. Animals 10. https://doi.org/10.3390/ani10112097.

Ungerfeld, E.M., 2015. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00037.

Vargas, J.E., Andrés, S., López-Ferreras, L., Snelling, T.J., Yáñez-Ruíz, D.R., García-Estrada, C., López, S., 2020. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Sci Rep 10, 1613. https://doi.org/10.1038/s41598-020-58401-z.

Vázquez-Carrillo, M.F., Montelongo-Pérez, H.D., González-Ronquillo, M., Castillo-Gallegos, E., Castelán-Ortega, O.A., 2020. Effects of three herbs on methane emissions from beef cattle. Animals 10. https://doi.org/10.3390/ani10091671.

Wanapat, M., Khejornsart, P., Pakdee, P., Wanapat, S., 2008. Effect of supplementation of garlic powder on rumen ecology and digestibility of nutrients in ruminants. J Sci Food Agric 88, 2231– 2237. https://doi.org/10.1002/jsfa.3333.

Wang, K., Nan, X., Chu, K., Tong, J., Yang, L., Zheng, S., Zhao, G., Jiang, L., Xiong, B., 2018a. Shifts of hydrogen metabolism from methanogenesis to propionate production in response to replacement of forage fiber with non-forage fiber sources in diets in vitro. Front Microbiol 9, 2764. https://doi.org/10.3389/fmicb.2018.02764.

Wang, R., Wang, M., Ungerfeld, E.M., Zhang, X.M., Long, D.L., Mao, H.X., Deng, J.P., Bannink, A., Tan, Z.L., 2018b. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. J Dairy Sci 101, 9789–9799. https://doi.org/10.3168/jds.2018-14904.

Zhong, R., Xiang, H., Cheng, L., Zhao, C., Wang, F., Zhao, X., Fang, Y., 2019. Effects of feeding garlic powder on growth performance, rumen fermentation, and the health status of lambs infected by gastrointestinal nematodes. Animals 9, 102. https://doi.org/10.3390/ani9030102.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る