リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Review of Policies for Indonesia's Electricity Sector Transition and Qualitative Evaluation of Impacts and Influences Using a Conceptual Dynamic Model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Review of Policies for Indonesia's Electricity Sector Transition and Qualitative Evaluation of Impacts and Influences Using a Conceptual Dynamic Model

Zahari, Teuku Naraski McLellan, Benjamin C. 京都大学 DOI:10.3390/en16083406

2023.04

概要

Indonesia’s final energy demand is projected to increase by 70% in the next decade, with electricity expected to account for 32%. The increasing electricity demand poses a potential threat to national emissions reduction targets since fossil fuels generated 86% of the electricity in 2018, associated to 50% of the national CO2 emissions. Indonesia plans to reduce its CO2 emissions by 29% by increasing the total electricity generated from renewables, using a set of market-based and regulatory policies. However, economic, social, and environmental issues may arise from the widespread adoption of renewable energy. This study explores the economic, social, and environmental effects of renewable energy policies in the electricity sector. Our work presents an advance over previous studies that attempted to understand the electricity sector energy transition from a system perspective by exploring the structural feedback between it and economic, energy, and environmental systems. This enables the assessment of different energy policies using more macro indicators, which further emphasize the novelty of our work. A combination of system dynamics modelling and a policy analysis framework was applied to explore these issues. Our study proposes a dynamic hypothesis that the price of energy increases over time, in the absence of substitution, becoming a limiting factor in the transition to renewables in the electricity sector. The fiscal budget was found to be a bottleneck for renewable energy adoption in the electricity sector in Indonesia. We found that a fossil fuel depletion premium could be a potential supporting policy to enable the smooth phasing-out of fossil fuels and support a sustainable energy transition.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

IEA. Total CO2 Emissions, Indonesia 1990–2018. 2018. Available online: https://www.iea.org/data-and-statistics?country=IN

DONESIA&fuel=Energytransitionindicators&indicator=CO2BySource (accessed on 4 May 2021).

IEA. IEA Atlas of Energy. 2020. Available online: http://energyatlas.iea.org/#!/tellmap/1378539487 (accessed on 4 May 2021).

IEA. CO2 Emissions by Sector, Indonesia 1990–2018. 2018. Available online: https://www.iea.org/data-and-statistics?country=

INDONESIA&fuel=CO2emissions&indicator=CO2BySector (accessed on 4 May 2021).

National Energy Council. Indonesia Energy Outlook 2019; National Energy Council: Jakarta, India, 2019.

Government of Indonesia. Enhanced Nationally Determined Contribution (NDC) Republic of Indonesia; Government of Indonesia:

Jakarta, Indonesia, 2022.

Landon, S.; Barrett, A.; Cowan, C.; Colton, K.; Johnson, D. The Footprint Of Energy: Land Use of U.S. Electricity Production. 2017.

Available online: https://www.strata.org/pdf/2017/footprints-full.pdf (accessed on 2 February 2021).

IRENA. Renewable Power Generation Costs in 2021; IRENA: Abu Dhabi, United Arab Emirates, 2022.

Batalla-Bejerano, J.; Trujillo-Baute, E. Impacts of intermittent renewable generation on electricity system costs. Energy Policy 2016,

94, 411–420. [CrossRef]

Ueckerdt, F.; Hirth, L.; Luderer, G.; Edenhofer, O. System LCOE: What are the costs of variable renewables? Energy 2013, 63, 61–75.

[CrossRef]

Putranto, L.M.; Widodo, T.; Indrawan, H.; Ali Imron, M.; Rosyadi, S.A. Grid parity analysis: The present state of PV rooftop in

Indonesia. Renew. Energy Focus 2022, 40, 23–38. [CrossRef]

Braithwaite, D.; Gerasimchuk, I. Beyond Fossil Fuels: Indonesia’s Fiscal Transition; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2019.

Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al.

Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906.

[CrossRef]

Government of Indonesia. Rencana Umum Energi Nasional; Government of Indonesia: Jakarta, Indonesia, 2017.

Ministry of Energy and Mineral Resources. Handbook Of Energy & Economic Statistics of Indonesia 2021; Ministry of Energy and

Mineral Resources: Jakarta, Indonesia, 2021.

Klein, A.; Merkel, E.; Pfluger, B.; Held, A.; Ragwitz, M.; Resch, G. Evaluation of Different Feed-In Tariff Design Options—Best Practice

Paper for the International Feed-In Cooperation; Fraunhofer IEE: Kassel, Germany, 2010.

Energies 2023, 16, 3406

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

19 of 22

Lesser, J.A.; Su, X. Design of an economically efficient feed-in tariff structure for renewable energy development. Energy Policy

2008, 36, 981–990. [CrossRef]

Zhang, X.; Cui, X.; Li, B.; Hidalgo-Gonzalez, P.; Kammen, D.M.; Zou, J.; Wang, K. Immediate actions on coal phaseout enable a

just low-carbon transition in China’s power sector. Appl. Energy 2022, 308, 118401. [CrossRef]

Hidayatno, A.; Setiawan, A.D.; Wikananda Supartha, I.M.; Moeis, A.O.; Rahman, I.; Widiono, E. Investigating policies on

improving household rooftop photovoltaics adoption in Indonesia. Renew. Energy 2020, 156, 731–742. [CrossRef]

Setiawan, A.D.; Dewi, M.P.; Jafino, B.A.; Hidayatno, A. Evaluating feed-in tariff policies on enhancing geothermal development

in Indonesia. Energy Policy 2022, 168, 113164. [CrossRef]

Crespo del Granado, P.; van Nieuwkoop, R.H.; Kardakos, E.G.; Schaffner, C. Modelling the energy transition: A nexus of energy

system and economic models. Energy Strateg. Rev. 2018, 20, 229–235. [CrossRef]

Sunitiyoso, Y.; Mahardi, J.P.; Anggoro, Y.; Wicaksono, A. New and renewable energy resources in the Indonesian electricity sector:

A systems thinking approach. Int. J. Energy Sect. Manag. 2020, 14, 1381–1403. [CrossRef]

Morçöl, G. A Complexity Theory for Public Policy, 1st ed.; Routledge: New York, NY, USA, 2012; ISBN 9781136283475.

Dyner, I.; Larsen, E.R. From planning to strategy in the electricity industry. Energy Policy 2001, 29, 1145–1154. [CrossRef]

Loulou, R.; Remne, U.; Kanudia, A.; Lehtila, A.; Goldstein, G. Documentation for the TIMES Model—PART I. IEA. 2016. Available

online: https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-I_July-2016.pdf (accessed on 8 August 2022).

Gabriel, S.A.; Kydes, A.S.; Whitman, P. The National Energy Modeling System: A Large-Scale Energy-Economic Equilibrium

Model. Oper. Res. 2001, 49, 14–25. [CrossRef]

Stockholm Environment Institute. User Guide for LEAP, no. May; Stockholm Environment Institute: Stockholm, Sweden, 2005.

Yamaguchi, Y. Developing an Asd Macroeconomic Model of the Stock Approach-with Emphasis on Bank Lending and Interest Rates;

University of Bergen: Bergen, Norway, 2017.

Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; McGraw-Hill Higher Education: New York,

NY, USA, 2000; ISBN 0-07-23113.

Pruyt, E. Dealing with Uncertainties? Combining System Dynamics with Multiple Criteria Decision Analysis or with Exploratory

Modelling. Policy Anal. 2007, 1–22. Available online: http://www.systemdynamics.org/conferences/2007/proceed/papers/P

RUYT386.pdf (accessed on 8 August 2022).

Shmelev, S.E. Ecological Economics: Sustainability in Practice; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9789400719729.

Zweifel, P.; Praktiknjo, A.; Erdmann, G. Energy Economics: Theory and Application; Business A; Springer Nature: Berlin/Heidelberg,

Germany, 2017; ISBN 978-3-662-53022-1.

Jacobsen, H.K. Integrating the bottom-up and top-down approach to energy-economic modelling: The case of Denmark. Energy

Econ. 1998, 20, 443–461. [CrossRef]

Koopmans, C.C.; Te Velde, D.W. Bridging the energy efficiency gap: Using bottom-up information in a top-down energy demand

model. Energy Econ. 2001, 23, 57–75. [CrossRef]

Henckens, M.L.C.M.; van Ierland, E.C.; Driessen, P.P.J.; Worrell, E. Mineral resources: Geological scarcity, market price trends,

and future generations. Resour. Policy 2016, 49, 102–111. [CrossRef]

Solow, R.M. On the Intergenerational Allocation of Natural Resources. Scand. J. Econ. 1986, 88, 141–149. Available online:

https://www.jstor.org/stable/3440280?seq=1#metadata_info_tab_contents (accessed on 9 August 2022). [CrossRef]

Solow, R. An almost practical step toward sustainability. Resour. Policy 1993, 19, 162–172. [CrossRef]

Setyawan, D. Assessing the current ndonesia’s electricity market arrangements and the opportunities to reform. Int. J. Renew.

Energy Dev. 2014, 3, 55–64. [CrossRef]

Burke, P.J.; Widnyana, J.; Anjum, Z.; Aisbett, E.; Resosudarmo, B.; Baldwin, K.G.H. Overcoming barriers to solar and wind energy

adoption in two Asian giants: India and Indonesia. Energy Policy 2019, 132, 1216–1228. [CrossRef]

Ministry of Energy and Mineral Resources. 2020 Electricity Statistics; Ministry of Energy and Mineral Resources: Jakarta,

Indonesia, 2021.

Parra, P.; Okubo, Y.; Roming, N.; Sferra, F.; Fuentes, U.; Schaeffer, M.; Hare, B. Science Based Coal Phase-Out Timeline for Japan

Implications for Policymakers and Investors. 2018. Available online: https://climateanalytics.org/media/coalphaseout-2018-enreport_1.pdf (accessed on 17 May 2021).

Burke, P.J.; Kurniawati, S. Electricity subsidy reform in Indonesia: Demand-side effects on electricity use. Energy Policy 2018,

116, 410–421. [CrossRef]

Myers, N.; Kent, J. Perverse Subsidies: How Tax Dollars Can Undercut the Environment and the Economy; Island Press: Washington,

DC, USA, 2001; ISBN 1559638354.

Attwood, C.; Bridle, R.; Gass, P.; Halimanjaya, A.S.; Laan, T.; Lontoh, L.; Sanchez, L.; Toft, L. Financial Supports for Coal and

Renewables in Indonesia; International Institute for Sustainable Development: Geneva, Switzerland, 2017.

Komives, K.; Foster, V.; Halpern, J.; Wodon, Q. Water, Electricity, and the Poor; The International Bank for Reconstruction and

Development: Washington, DC, USA, 2005; ISBN 978-0-8213-6342-3.

DIW Berlin. Phasing Out Coal in The German Energy Sector; DIW: Berlin, Germany, 2019.

Wagner, L.; Molyneaux, L.; Foster, J. The magnitude of the impact of a shift from coal to gas under a Carbon Price. Energy Policy

2014, 66, 280–291. [CrossRef]

Davis, L.W. The Economic Cost of Global Fuel Subsidies. Am. Econ. Rev. 2014, 104, 581–585. [CrossRef]

Energies 2023, 16, 3406

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

20 of 22

Ministry of Energy and Mineral Resources. Ministry Regulation 255.K/30/MEM/20202 Coal Domestic Market Obligation; Ministry of

Energy and Mineral Resources: Jakarta, Indonesia, 2020.

Mendonça, M.; Jacobs, D.; Sovacool, B. Powering the Green Economy: The Feed-In Tariff Handbook; Taylor& Francis: Abingdon, UK,

2010; ISBN 978-1-84407-857-8.

Chatterjee, S.K. The Renewable Energy Policy Dilemma in India: Should Renewable Energy Certificate Mechanism Compete or Merge

with the Feed-In-Tariff Scheme? M-RCBG Associate Working Paper Series; Harvard Kennedy School, Mossavar-Rahmani Center for

Business and Government: Cambridge, MA, USA, 2017; p. 61.

United Nations. Resolution Adopted by the General Assembly on 25 September 2015; United Nations: New York, NY, USA, 2015.

Lamperti, F.; Dosi, G.; Napoletano, M.; Roventini, A.; Sapio, A. Faraway, So Close: Coupled Climate and Economic Dynamics in

an Agent-based Integrated Assessment Model. Ecol. Econ. 2018, 150, 315–339. [CrossRef]

IPCC. Emissions: Enery, Road Transport. In Good Practice Guidance and Uncertainty Management in National Greenhouse Gas

Inventories; IPCC: Geneva, Switzerland, 1998; pp. 55–70.

IPCC. Assessing Transformation Pathways; IPCC: Geneva, Switzerland, 2015.

Kim, H.; McJeon, H.; Jung, D.; Lee, H.; Bergero, C.; Eom, J. Integrated Assessment Modeling of Korea’s 2050 Carbon Neutrality

Technology Pathways. Energy Clim. Chang. 2022, 3, 100075. [CrossRef]

Cavallaro, F.; Ciraolo, L. A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy 2005,

33, 235–244. [CrossRef]

Rye, C.D.; Jackson, T. A review of EROEI-dynamics energy-transition models. Energy Policy 2018, 122, 260–272. [CrossRef]

Madlener, R.; Stagl, S. Sustainability-guided promotion of renewable electricity generation. Ecol. Econ. 2005, 53, 147–167.

[CrossRef]

Government Budget. Public Finance. 2008. Available online: https://tradingeconomics.com/country-list/government-budget?

continent=asia (accessed on 14 November 2019).

Diakoulaki, D.; Karangelis, F. Multi-criteria decision analysis and cost-benefit analysis of alternative scenarios for the power

generation sector in Greece. Renew. Sustain. Energy Rev. 2007, 11, 716–727. [CrossRef]

Serven, L. Uncertainty, Instability, and Irreversible Investment: Theory, Evidence, and Lessons for Africa; Policy Research Working Paper;

The World Bank Group: Washington, DC, USA, 1997.

EPA. Emission Factors for Greenhouse Gas Inventories. 2014. Available online: https://www.epa.gov/sites/default/files/201507/documents/emission-factors_2014.pdf (accessed on 22 May 2022).

Dorini, G.; Kapelan, Z.; Azapagic, A. Managing uncertainty in multiple-criteria decision making related to sustainability

assessment. Clean Technol. Environ. Policy 2011, 13, 133–139. [CrossRef]

Chatzimouratidis, A.I.; Pilavachi, P.A. Sensitivity analysis of the evaluation of power plants impact on the living standard using

the analytic hierarchy process. Energy Convers. Manag. 2008, 49, 3599–3611. [CrossRef]

Helbig, C.; Bradshaw, A.M.; Wietschel, L.; Thorenz, A.; Tuma, A. Supply risks associated with lithium-ion battery materials.

J. Clean. Prod. 2018, 172, 274–286. [CrossRef]

Gunnarsdottir, I.; Davidsdottir, B.; Worrell, E.; Sigurgeirsdottir, S. Indicators for sustainable energy development: An Icelandic

case study. Energy Policy 2022, 164, 112926. [CrossRef]

Gamboa, G.; Munda, G. The problem of windfarm location: A social multi-criteria evaluation framework. Energy Policy 2007,

35, 1564–1583. [CrossRef]

Afgan, N.H.; Carvalho, M.G. Multi-criteria assessment of new and renewable energy power plants. Energy 2002, 27, 739–755.

[CrossRef]

Noble, B.F. A multi-criteria analysis of Canadian electricity supply futures. Can. Geogr. 2004, 48, 11–28. [CrossRef]

Del Pero, F.; Delogu, M.; Pierini, M. Life Cycle Assessment in the automotive sector: A comparative case study of Internal

Combustion Engine (ICE) and electric car. Procedia Struct. Integr. 2018, 12, 521–537. [CrossRef]

Linh Nguyen, T.N.; Pimonsree, S.; Prueksakorn, K.; Bich Thao, P.T.; Vongruang, P. Public health and economic impact assessment

of PM2.5 from open biomass burning over countries in mainland Southeast Asia during the smog episode. Atmos. Pollut. Res.

2022, 13, 101418. [CrossRef]

Walker, W.E. Policy Analysis: A Systematic Approach to Supporting Policymaking in the Public Sector. J. Multi-Criteria Decis.

Anal. 2000, 9, 11–27. [CrossRef]

Hamadneh, J.; Duleba, S. Stakeholder viewpoints analysis of the autonomous vehicle industry by using multi-actors multi-criteria

analysis. Transp. Policy 2022, 126, 65–84. [CrossRef]

Madlener, R.; Stoverink, S. Power plant investments in the Turkish electricity sector: A real options approach taking into account

market liberalization. Appl. Energy 2012, 97, 124–134. [CrossRef]

Yuan, J.; Li, X.; Xu, C.; Zhao, C.; Liu, Y. Investment risk assessment of coal-fired power plants in countries along the Belt and

Road initiative based on ANP-Entropy-TODIM method. Energy 2019, 176, 623–640. [CrossRef]

Kim, D.H. System Archetypes I: Diagnosing Systemic Issues and Designing High-Leverage Interventions; Pegasus Communications:

Cambridge, MA, USA, 1992; ISBN 1-883823-00-5.

Lambin, E.F. Global land availability: Malthus versus Ricardo. Glob. Food Sec. 2012, 1, 83–87. [CrossRef]

Energies 2023, 16, 3406

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

21 of 22

Naderi, M.M.; Mirchi, A.; Bavani, A.R.M.; Goharian, E.; Madani, K. System dynamics simulation of regional water supply and

demand using a food-energy-water nexus approach: Application to Qazvin Plain, Iran. J. Environ. Manage. 2021, 280, 111843.

[CrossRef]

Kraft, J.; Kraft, A. On the relationship between energy and GNP. In J. Energy Dev.; 1974; 3, pp. 401–403. Available online:

http://www.osti.gov/scitech/biblio/6713220 (accessed on 2 August 2022).

Lean, H.H.; Smyth, R. Multivariate Granger causality between electricity generation, exports, prices and GDP in Malaysia. Energy

2010, 35, 3640–3648. [CrossRef]

Acheampong, A.O.; Boateng, E.; Amponsah, M. Econometric Analysis of the Economic Growth-Energy Consumption Nexus in Emerging

Economies: The Role of Globalization; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780128244418.

EL-Karimi, M.; El-houjjaji, H. Economic growth and renewable energy consumption nexus in G7 countries: Symmetric and

asymmetric causality analysis in frequency domain. J. Clean. Prod. 2022, 342, 130618. [CrossRef]

Gyimah, J.; Yao, X.; Tachega, M.A.; Sam Hayford, I.; Opoku-Mensah, E. Renewable energy consumption and economic growth:

New evidence from Ghana. Energy 2022, 248, 123559. [CrossRef]

Shahbaz, M.; Khan, S.; Tahir, M.I. The dynamic links between energy consumption, economic growth, financial development and

trade in China: Fresh evidence from multivariate framework analysis. Energy Econ. 2013, 40, 8–21. [CrossRef]

Lee, C.C.; Chang, C.P. Energy consumption and economic growth in Asian economies: A more comprehensive analysis using

panel data. Resour. Energy Econ. 2008, 30, 50–65. [CrossRef]

Narayan, P.K.; Smyth, R. Energy consumption and real GDP in G7 countries: New evidence from panel cointegration with

structural breaks. Energy Econ. 2008, 30, 2331–2341. [CrossRef]

Sadorsky, P. Energy consumption, output and trade in South America. Energy Econ. 2012, 34, 476–488. [CrossRef]

Shahbaz, M.; Tang, C.F.; Shahbaz Shabbir, M. Electricity consumption and economic growth nexus in Portugal using cointegration

and causality approaches. Energy Policy 2011, 39, 3529–3536. [CrossRef]

Rahman, M.M. The dynamic nexus of energy consumption, international trade and economic growth in BRICS and ASEAN

countries: A panel causality test. Energy 2021, 229, 120679. [CrossRef]

Menegaki, A.N. Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis. Energy

Econ. 2011, 33, 257–263. [CrossRef]

Tran, B.L.; Chen, C.C.; Tseng, W.C. Causality between energy consumption and economic growth in the presence of GDP

threshold effect: Evidence from OECD countries. Energy 2022, 251, 123902. [CrossRef]

Yildirim, E.; Sukruoglu, D.; Aslan, A. Energy consumption and economic growth in the next 11 countries: The bootstrapped

autoregressive metric causality approach. Energy Econ. 2014, 44, 14–21. [CrossRef]

Destek, M.A.; Aslan, A. Renewable and non-renewable energy consumption and economic growth in emerging economies:

Evidence from bootstrap panel causality. Renew. Energy 2017, 111, 757–763. [CrossRef]

Abdelradi, F.; Serra, T. Food-energy nexus in Europe: Price volatility approach. Energy Econ. 2015, 48, 157–167. [CrossRef]

Reuters. Indonesia will Subsidise 1.2 bln Litres of Cooking Oil to Cool Prices. 2022. Available online: https://www.reuters.com/

markets/commodities/indonesia-will-subsidise-12-bln-litres-cooking-oil-cool-prices-2022-01-05/ (accessed on 28 June 2022).

BPS. Inflasi Indonesia Menurut Kelompok Pengeluaran, Jakarta. 2022. Available online: https://www.bps.go.id/statictable/2020

/02/04/2083/inflasi-indonesia-menurut-kelompok-pengeluaran-2020-2022.html (accessed on 29 June 2022).

Cariolle, J. Measuring Macroeconomic Volatility: Applications to Export Revenue Data, 1970–2005; Innovative Indicators Series;

Fondation pour les Etudes et Recherches sur le Developpement International: Clermont-Ferrand, France, 2012.

Acemoglu, D.; Johnson, S.; Robinson, J.; Thaicharoen, Y. Institutional causes, macroeconomic symptoms: Volatility, crises and

growth. J. Monet. Econ. 2003, 50, 49–123. [CrossRef]

Raddatz, C. Are external shocks responsible for the instability of output in low-income countries? J. Dev. Econ. 2007, 84, 155–187.

[CrossRef]

Van der Ploeg, F.; Poelhekke, S. Volatility and the natural resource curse. Oxf. Econ. Pap. 2009, 61, 727–760. Available online:

http://www.jstor.org/stable/27784157 (accessed on 22 June 2022). [CrossRef]

Di Giovanni, J.; Levchenko, A.A. The Risk Content of Exports: A Portfolio View of International Trade. In NBER International

Seminar on Macroeconomics; The University of Chicago Press: Chicago, IL, USA, 2012; Volume 8, p. 16005.

Oliveira, L.; Messagie, M.; Rangaraju, S.; Sanfelix, J.; Hernandez Rivas, M.; Van Mierlo, J. Key issues of lithium-ion batteries—From

resource depletion to environmental performance indicators. J. Clean. Prod. 2015, 108, 354–362. [CrossRef]

Koyamparambath, A.; Santillán-Saldivar, J.; McLellan, B.; Sonnemann, G. Supply risk evolution of raw materials for batteries and

fossil fuels for selected OECD countries (2000–2018). Resour. Policy 2022, 75, 102465. [CrossRef]

Greim, P.; Solomon, A.A.; Breyer, C. Assessment of lithium criticality in the global energy transition and addressing policy gaps

in transportation. Nat. Commun. 2020, 11, 4570. [CrossRef]

Ram, M.; Aghahosseini, A.; Breyer, C. Job creation during the global energy transition towards 100% renewable power system by

2050. Technol. Forecast. Soc. Chang. 2020, 151, 119682. [CrossRef]

Garrett-Peltier, H. Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil

fuels using an input-output model. Econ. Model. 2017, 61, 439–447. [CrossRef]

Ju, Y.; Sugiyama, M.; Kato, E.; Oshiro, K.; Wang, J. Job creation in response to Japan’s energy transition towards deep mitigation:

An extension of partial equilibrium integrated assessment models. Appl. Energy 2022, 318, 119178. [CrossRef]

Energies 2023, 16, 3406

22 of 22

108. Dicce, R.P.; Ewers, M.C. Solar labor market transitions in the United Arab Emirates. Geoforum 2021, 124, 54–64. [CrossRef]

109. Pai, S.; Zerriffi, H.; Jewell, J.; Pathak, J. Solar has greater techno-economic resource suitability than wind for replacing coal mining

jobs. Environ. Res. Lett. 2020, 15, 034065. [CrossRef]

110. Blankenship, B.; Aklin, M.; Urpelainen, J.; Nandan, V. Jobs for a just transition: Evidence on coal job preferences from India.

Energy Policy 2022, 165, 112910. [CrossRef]

111. Azmi, R. Analysis of Indonesian Residential Electricity Consumption and Burden: Using Indonesia Family Survey; Ministry of Finance:

Jakarta, Indonesia, 2014.

112. BPS. Persentase Pengeluaran Rata-Rata per Kapita Sebulan Menurut Kelompok Barang. Jakarta. 2022. Available online:

https://www.bps.go.id/statictable/2009/06/15/937/persentase-pengeluaran-rata-rata-per-kapita-sebulan-menurut-kelom

pok-barang-indonesia-1999-2002-2021.html (accessed on 1 July 2022).

113. BPS. Indonesia GDP 2010–2022. Jakarta. 2022. Available online: https://www.bps.go.id/indicator/11/65/2/-seri-2010-pdb-seri2010.html (accessed on 12 July 2022).

114. Gultom, Y.M.L. When extractive political institutions affect public-private partnerships: Empirical evidence from Indonesia’s

independent power producers under two political regimes. Energy Policy 2021, 149, 112042. [CrossRef]

115. Ministry of Energy and Mineral Resources Hindari Pemadaman 10 Juta Pelanggan PLN, Pemerintah Larang Sementara Ekspor

Batubara. Ministry of Energy and Mineral Resources. 2022. Available online: https://www.esdm.go.id/id/media-center/arsip-b

erita/hindari-pemadaman-10-juta-pelanggan-pln-pemerintah-larang-sementara-ekspor-batubara (accessed on 5 August 2022).

116. PLN. Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2021–2030; PLN: Jakarta, Indonesia, 2021.

117. Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 2015, 5, 329–332. [CrossRef]

118. Dong, Y.; Shimada, K. Evolution from the renewable portfolio standards to feed-in tariff for the deployment of renewable energy

in Japan. Renew. Energy 2017, 107, 590–596. [CrossRef]

119. Pyrgou, A.; Kylili, A.; Fokaides, P.A. The future of the Feed-in Tariff (FiT) scheme in Europe: The case of photovoltaics. Energy

Policy 2016, 95, 94–102. [CrossRef]

120. Zhang, M.M.; Zhou, D.Q.; Zhou, P.; Liu, G.Q. Optimal feed-in tariff for solar photovoltaic power generation in China: A real

options analysis. Energy Policy 2016, 97, 181–192. [CrossRef]

121. Tantisattayakul, T.; Kanchanapiya, P. Financial measures for promoting residential rooftop photovoltaics under a feed-in tariff

framework in Thailand. Energy Policy 2017, 109, 260–269. [CrossRef]

122. Alesina, A.; Favero, C.A.; Giavazi, F. Climbing Out of Debt. Financ. Dev. 2018, 55, 6–11.

123. Hines, J.R.; Keen, M.J. Certain effects of random taxes. J. Public Econ. 2021, 203, 104412. [CrossRef]

124. Scheinkman, J.A. Nonlinearities in Economic Dynamics. Econ. J. 1990, 100, 33–48. Available online: https://www.jstor.org/stable

/2234182 (accessed on 8 August 2022). [CrossRef]

125. Samper, M.; Coria, G.; Facchini, M. Grid parity analysis of distributed PV generation considering tariff policies in Argentina.

Energy Policy 2021, 157, 112519. [CrossRef]

126. Monasterolo, I.; Raberto, M. The impact of phasing out fossil fuel subsidies on the low-carbon transition. Energy Policy 2019,

124, 355–370. [CrossRef]

127. Asian Development Bank. ETM Introduction; Asian Development Bank: Mandaluyong, Philippines, 2022.

128. Du, G. Nexus between green finance, renewable energy, and carbon intensity in selected Asian countries. J. Clean. Prod. 2023,

405, 136822. [CrossRef]

129. Wang, S.; Sun, L.; Iqbal, S. Green financing role on renewable energy dependence and energy transition in E7 economies. Renew.

Energy 2022, 200, 1561–1572. [CrossRef]

130. Galli, C. Self-fulfilling debt crises, fiscal policy and investment. J. Int. Econ. 2021, 131, 103475. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る