リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Superconductivity in a ferroelectric-like topological semimetal SrAuBi」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Superconductivity in a ferroelectric-like topological semimetal SrAuBi

Takahashi, Hidefumi 大阪大学

2023.12.20

概要

Metallic materials have been considered to unfavor ferroelectriclike structure transitions as the induced ferroelectric dipole tends
to be screened by itinerant electrons1,2. Despite this tendency,
ferroelectric-like structural transitions have recently been found
with great attention in several metallic compounds, such as
LiOsO3 and β-MoTe23–5. As is evident from the scarcity of
ferroelectric-like
metals,
superconductors
that
exhibit
ferroelectric-like structural transition are even rarer, since superconductivity typically favors metallic states with large amounts of
itinerant electrons6–10. Nevertheless, the coexistence of the
superconductivity and the ferroelectric-like transition has been
actively discussed, as they have a potential to exhibit unique
features typified by the singlet-triplet mixing state11,12 and
topological superconductivity with a Majorana edge state13,14.
For instance, the discovery of a polar superconductor CePt3Si has
spurred theoretical and experimental investigations inherent in
the heavy-fermion systems with inversion symmetry
breaking12,15–18.
One of the most important factors yielding such unique
electronic properties in these superconductors is the spin–orbit
coupling (SOC), which is especially important in noncentrosymmetric systems containing heavy elements such as Bi. For instance,
half-Heusler compounds R(Pt, Pd)Bi (R is a rare-earth metal) with a
noncentrosymmetric structure and strong SOC have been
considered to be unconventional superconductors with quintet
or septet Cooper pairing dominated by the j = 3/2 electrons (j is
the total angular momentum)19–22. To be noted here is that the
role of SOC in polar structures differs from that in noncentrosymmetric and nonpolar structures in that it produces electromagnetic effects and nonreciprocal responses23–26. ...

この論文で使われている画像

参考文献

1. Anderson, P. W. & Blount, E. I. Symmetry considerations on Martensitic transformations: ‘Ferroelectric’ metals? Phys. Rev. Lett. 14, 217–219 (1965).

2. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related

Materials. (Oxford University Press, 2001).

3. Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12,

1024–1027 (2013).

4. Clarke, R., Marseglia, E. & Hughes, H. P. A low-temperature structural phase

transition in β-MoTe2. Philos. Mag. B 38, 121–126 (1978).

5. Sakai, H. et al. Critical enhancement of thermopower in a chemically tuned polar

semimetal MoTe2. Sci. Adv. 2, e1601378 (2016).

6. Matthias, B. T. Superconductivity versus ferroelectricity. Mater. Res. Bull. 5,

665–667 (1970).

7. Krivolapov, Y., Mann, A. & Birman, J. L. Theory of coexistence of superconductivity

and ferroelectricity. Phys. Rev. B 75, 092503 (2007).

8. Collignon, C., Lin, X., Rischau, C. W., Fauqué, B. & Behnia, K. Metallicity and

Superconductivity in Doped Strontium Titanate. Annu. Rev. Condens. Matter Phys.

10, 25–44 (2019).

npj Quantum Materials (2023) 77

9. Tomioka, Y., Shirakawa, N. & Inoue, I. H. Superconductivity enhancement in polar

metal regions of Sr0.95Ba0.05TiO3 and Sr0.985Ca0.015TiO3 revealed by systematic Nb

doping. npj Quant. Mater. 7, 111 (2022).

10. Trimble, C. J. et al. Josephson detection of time-reversal symmetry broken

superconductivity in SnTe nanowires. npj Quant. Mater. 6, 61 (2021).

11. Bauer, E. & Sigrist, M. Non-Centrosymmetric Superconductors: Introduction and

Overview. (Springer Science & Business Media, 2012).

12. Smidman, M., Salamon, M. B., Yuan, H. Q. & Agterberg, D. F. Superconductivity

and spin-orbit coupling in non-centrosymmetric materials: a review. Rep. Prog.

Phys. 80, 036501 (2017).

13. Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80,

076501 (2017).

14. Alidoust, M., Halterman, K. & Zyuzin, A. A. Superconductivity in type-II Weyl

semimetals. Phys. Rev. B 95, 155124 (2017).

15. Bauer, E. et al. Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si. Phys. Rev. Lett. 92, 027003 (2004).

16. Samokhin, K. V., Zijlstra, E. S. & Bose, S. K. CePt3Si: an unconventional superconductor without inversion center. Phys. Rev. B 69, 094514 (2004).

17. Kimura, N., Ito, K., Aoki, H., Uji, S. & Terashima, T. Extremely high upper critical

magnetic field of the noncentrosymmetric heavy fermion superconductor

CeRhSi3. Phys. Rev. Lett. 98, 197001 (2007).

18. Kimura, N. et al. Pressure-induced superconductivity in noncentrosymmetric

heavy-fermion CeRhSi3. Phys. Rev. Lett. 95, 247004 (2005).

19. Butch, N. P., Syers, P., Kirshenbaum, K., Hope, A. P. & Paglione, J. Superconductivity in the topological semimetal YPtBi. Phys. Rev. B 84, 220504 (2011).

20. Pan, Y. et al. Superconductivity and magnetic order in the noncentrosymmetric

half-Heusler compound ErPdBi. EPL 104, 27001 (2013).

21. Brydon, P. M. R., Wang, L., Weinert, M. & Agterberg, D. F. Pairing of j=3/2 Fermions

in Half-Heusler Superconductors. Phys. Rev. Lett. 116, 177001 (2016).

22. Kim, H. et al. Beyond triplet: unconventional superconductivity in a spin-3/2

topological semimetal. Sci. Adv. 4, eaao4513 (2018).

23. Edelstein, V. M. Magnetoelectric effect in polar superconductors. Phys. Rev. Lett.

75, 2004–2007 (1995).

24. Wakatsuki, R. et al. Nonreciprocal charge transport in noncentrosymmetric

superconductors. Sci. Adv. 3, e1602390 (2017).

25. Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376

(2020).

26. He, W.-Y. & Law, K. T. Magnetoelectric effects in gyrotropic superconductors. Phys.

Rev. Res. 2, 012073 (2020).

27. Shen, D. et al. Two-dimensional superconductivity and magnetotransport

from topological surface states in AuSn4 semimetal. Commun. Mater. 1, 1–11

(2020).

28. Shvetsov, O. O. et al. Surface superconductivity in a three-dimensional Cd3As2

semimetal at the interface with a gold contact. Phys. Rev. B 99, 125305 (2019).

29. Zhao, L. et al. Emergent surface superconductivity in the topological insulator

Sb2Te3. Nat. Commun. 6, 8279 (2015).

30. Song, J. et al. Coexistence of surface superconducting and three-dimensional

topological dirac states in semimetal KZnBi. Phys. Rev. X 11, 021065 (2021).

31. Huang, C. et al. Proximity-induced surface superconductivity in Dirac semimetal

Cd3As2. Nat. Commun. 10, 2217 (2019).

32. Liu, Q. et al. Observation of surface superconductivity in a 3D Dirac material. Adv.

Funct. Mater. 32, 2208616 (2022).

33. Cheng, E. et al. Critical topology and pressure-induced superconductivity in the

van der Waals compound AuTe2Br. npj Quantum Mater. 7, 93 (2022).

34. Huang, Z. et al. Dual topological states in the layered titanium-based oxypnictide

superconductor BaTi2Sb2O. npj Quantum Mater. 7, 70 (2022).

35. Nomani, A. & Hosur, P. Intrinsic surface superconducting instability in Type-I Weyl

Semimetals. Phys. Rev. B 108, 165144 (2023).

36. Merlo, F., Pani, M. & Fornasini, M. L. RMX compounds formed by alkaline Earths,

europium and ytterbium—I. Ternary phases with M ≡ Cu, Ag, Au; X ≡ Sb, Bi. J.

Less Common Met. 166, 319–327 (1990).

37. Xie, L. S., Schoop, L. M., Medvedev, S. A., Felser, C. & Cava, R. J. Pressure-induced

structural phase transition in the half-Heusler compound CaAuBi. Solid State Sci.

30, 6–10 (2014).

38. Takahashi, H. et al. Superconductivity in a Magnetic Rashba Semimetal EuAuBi. J.

Phys. Soc. Jpn. 92, 013701 (2023).

39. Bay, T. V. et al. Low field magnetic response of the non-centrosymmetric

superconductor YPtBi. Solid State Commun. 183, 13–17 (2014).

40. Gurevich, A. Limits of the upper critical field in dirty two-gap superconductors.

Phys. C. Supercond. 456, 160–169 (2007).

41. Gurevich, A. Enhancement of the upper critical field by nonmagnetic impurities

in dirty two-gap superconductors. Phys. Rev. B 67, 184515 (2003).

42. Nishikubo, Y., Kudo, K. & Nohara, M. Superconductivity in the Honeycomb-Lattice

Pnictide SrPtAs. J. Phys. Soc. Jpn. 80, 055002 (2011).

Published in partnership with Nanjing University

H. Takahashi et al.

43. Pavlosiuk, O., Kaczorowski, D. & Wiśniewski, P. Shubnikov-de Haas oscillations,

weak antilocalization effect and large linear magnetoresistance in the putative

topological superconductor LuPdBi. Sci. Rep. 5, 9158 (2015).

44. Hunte, F. et al. Two-band superconductivity in LaFeAsO0.89F0.11 at very high

magnetic fields. Nature 453, 903–905 (2008).

45. Ni, N. et al. Effects of Co substitution on thermodynamic and transport properties

and anisotropic Hc2 in Ba(Fe1-xCox)2As2 single crystals. Phys. Rev. B 78, 214515

(2008).

46. Khan, H. R. & Raub, C. J. The superconductivity of gold alloys. Gold. Bull. 8,

114–118 (1975).

47. Wolthuis, A. & Stritzker, B. Amorphous Audi alloys produced by laser quenching

and ion irradiation. J. de. Phys. Colloq. 44, C5–489–C5–493 (1983).

48. Tian, M., Wang, J., Ning, W., Mallouk, T. E. & Chan, M. H. W. Surface superconductivity in thin cylindrical Bi nanowire. Nano Lett. 15, 1487–1492 (2015).

49. Pavlosiuk, O., Kaczorowski, D. & Wiśniewski, P. Superconductivity and Shubnikovde Haas oscillations in the noncentrosymmetric half-Heusler compound YPtBi.

Phys. Rev. B 94, 035130 (2016).

50. Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin

degeneracy: mixed singlet-triplet state. Phys. Rev. Lett. 87, 037004 (2001).

51. Frigeri, P. A., Agterberg, D. F., Koga, A. & Sigrist, M. Superconductivity without

inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).

52. Mineev, V. P. Paramagnetic limit of superconductivity in a crystal without an

inversion center. Phys. Rev. B 71, 012509 (2005).

53. Fujimoto, S. Electron correlation and pairing states in superconductors without

inversion symmetry. J. Phys. Soc. Jpn. 76, 051008 (2007).

54. Gao, H. et al. Dirac-Weyl semimetal: coexistence of dirac and Weyl Fermions in

polar hexagonal ABC crystals. Phys. Rev. Lett. 121, 106404 (2018).

55. Zhang, W. & Yi, W. Topological Fulde-Ferrell-Larkin-Ovchinnikov states in spinorbit-coupled Fermi gases. Nat. Commun. 4, 2711 (2013).

56. Qu, C. et al. Topological superfluids with finite-momentum pairing and Majorana

fermions. Nat. Commun. 4, 2710 (2013).

57. Ando, Y. & Fu, L. Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Condens. Matter Phys. 6,

361–381 (2015).

58. Cheon, S., Lee, K. H., Chung, S. B. & Yang, B.-J. Emergence of topological superconductivity in doped topological Dirac semimetals under symmetry-lowering

lattice distortions. Sci. Rep. 11, 18539 (2021).

59. Iniotakis, C., Fujimoto, S. & Sigrist, M. Fractional Flux quanta at intrinsic metallic

interfaces of noncentrosymmetric superconductors. J. Phys. Soc. Jpn. 77, 083701

(2008).

60. Takahashi, H. et al. Competing spin modulations in the magnetically frustrated

semimetal EuCuSb. Phys. Rev. B 102, 174425 (2020).

61. Krause, L. et al. Accurate high-resolution single-crystal diffraction data from a

Pilatus3 X CdTe detector. J. Appl. Crystallogr. 53, 635–649 (2020).

62. Blessing, R. H. Data reduction and error analysis for accurate single crystal diffraction intensities. Crystallogr. Rev. 1, 3–58 (1987).

63. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. B 71,

3–8 (2015).

64. Giannozzi, P. et al. Quantum espresso: a modular and open-source software

project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502

(2009).

65. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum

ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

66. Quantum Espresso. Quantum Espresso http://www.quantum-espresso.org

(Quantum Espresso, 2019).

67. Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci.

95, 337–350 (2014).

68. Calderon, C. E. et al. The AFLOW standard for high-throughput materials science

calculations. Comput. Mater. Sci. 108, 233–238 (2015).

Published in partnership with Nanjing University

69. Kawamura, M. FermiSurfer: Fermi-surface viewer providing multiple representation schemes. Comput. Phys. Commun. 239, 197–203 (2019).

ACKNOWLEDGEMENTS

The authors thank I. Terasaki, S. Fujimoto, T. Mizushima, K. Aoyama, and K. Akiba for

fruitful discussions. Single-crystal XRD measurements were conducted with the

approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No.

2021B1198 and 2022A1158). The authors would like to thank M. Arai, Y. Minowa, and

M. Asida for their assistance in the SEM/EDX measurements. This study was

supported in part by JSPS KAKENHI (Grant No. JP20K03802, JP21H01030,

JP22H00343, JP23H04871, and JP23H04868), the Asahi Glass Foundation, Research

Foundation for the Electrotechnology of Chubu, and the Murata Science Foundation.

AUTHOR CONTRIBUTIONS

H.T. conceived and led the project. H.T., T.S., and M.T. synthesized the samples and

performed magnetic and transport measurements. A.N. measured single-crystal XRD

measurements. K.A. and T.C.K measured specific heat capacity and low-temperature

transport properties below 1.8 K. H.T. measured the SEM/EDX. H.T., T.S., A.H.M., and

M.O. conducted the band calculations and structural optimization. S.I. supervised the

work. H.T. and S.I. prepared the manuscript with notable inputs from all authors.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41535-023-00612-4.

Correspondence and requests for materials should be addressed to Hidefumi

Takahashi or Shintaro Ishiwata.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://

creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

npj Quantum Materials (2023) 77

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る