リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dzyaloshinskii–Moriya interaction in noncentrosymmetric superlattices」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dzyaloshinskii–Moriya interaction in noncentrosymmetric superlattices

Ham, Woo Seung Pradipto, Abdul-Muizz Yakushiji, Kay Kim, Kwangsu Rhim, Sonny H. Nakamura, Kohji Shiota, Yoichi Kim, Sanghoon Ono, Teruo 京都大学 DOI:10.1038/s41524-021-00592-8

2021

概要

Dzyaloshinskii–Moriya interaction (DMI) is considered as one of the most important energies for specific chiral textures such as magnetic skyrmions. The keys of generating DMI are the absence of structural inversion symmetry and exchange energy with spin–orbit coupling. Therefore, a vast majority of research activities about DMI are mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report an asymmetric band formation in a superlattices (SL) which arises from inversion symmetry breaking in stacking order of atomic layers, implying the role of bulk-like contribution. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin–orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Our work provides more degrees of freedom to design chiral magnets for spintronics applications.

この論文で使われている画像

参考文献

1. Dzyaloshinskii, I. E. Thermodynamic theory of “Weak” ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP. 5, 1259 (1957).

2. Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev.

Lett. 4, 228–230 (1960).

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

W.S. Ham et al.

3. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism.

Phys. Rev. 120, 91 (1960).

4. Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii-Moriya interaction accounting

for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B

78, 140403 (2008).

5. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8,

152–156 (2013).

6. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven

dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

7. Boulle, O. et al. Room temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

8. Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing.

Nat. Electron. 3, 148–155 (2020).

9. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their

current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15,

501–506 (2016).

10. Jiang, W. et al. Skyrmions in magnetic multilayers. Phys. Rep. 704, 1–49 (2017).

11. Yang, H. et al. Significant Dzyaloshinskii–Moriya interaction at graphene–ferromagnet

interfaces due to the Rashba effect. Nat. Mater. 17, 605 (2018).

12. Kundu, A. & Zhang, S. Dzyaloshinskii-Moriya interaction mediated by spinpolarized band with Rashba spin-orbit coupling. Phys. Rev. B 92, 094434 (2015).

13. Di, K. et al. Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/

Ni film. Phys. Rev. Lett. 114, 047201 (2015).

14. Pollard, S. D. et al. Observation of stable Neel skyrmions in cobalt/palladium

multilayers with Lorentz transmission electron microscopy. Nat. Commun. 8,

14761 (2017).

15. Gilbert, D. A. et al. Realization of ground-state artificial skyrmion lattices at room

temperature. Nat. Commun. 6, 8462 (2015).

16. Pradipto, A.-M. et al. Enhanced perpendicular magnetocrystalline anisotropy

energy in an artificial magnetic material with bulk spin-momentum coupling.

Phys. Rev. B 99, 180410 (2019).

17. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral

degeneracy. JETP Lett. 39, 78 (1984).

18. Kim, K.-W. et al. Chirality from interfacial spin-orbit coupling effects in magnetic

bilayers. Phys. Rev. Lett. 111, 216601 (2013).

19. Barnes, S., Ieda, J. & Maekawa, S. Rashba spin-orbit anisotropy and the electric

field control of magnetism. Sci. Rep. 4, 4105 (2015).

20. Yang, H. et al. Anatomy and giant enhancement of the perpendicular magnetic

anisotropy of cobalt–graphene heterostructures. Nano Lett. 16, 145 (2016).

21. Kim, D. H. et al. Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys. Nat. Mater. 18, 685–690 (2019).

22. Nakamura, K. et al. Enhancement of magnetocrystalline anisotropy in ferromagnetic Fe films by intra-atomic noncollinear magnetism. Phys. Rev. B 67,

014420 (2003).

23. Yamamoto, K. et al. Interfacial Dzyaloshinskii-Moriya interaction and orbital

magnetic moments of metallic multilayer films. AIP Adv. 7, 056302 (2017).

24. Nakamura, K. et al. Symmetric and asymmetric exchange stiffnesses of transition-metal

thin film interfaces in external electric field. J. Magn. Magn. Mater. 457, 97 (2018).

25. Bahramy, M. S. & Ogawa, N. Bulk Rashba semiconductors and related quantum

phenomena. Adv. Mater. 29, 1605911 (2017).

26. Yao, B. & Coiffey, K. R. The influence of periodicity on the structures and properties of annealed [Fe/Pt]n multilayer films. J. Mag. Mag. Mater. 320, 559 (2008).

27. Yu, Y. S. et al. Structure and magnetic properties of magnetron-sputtered FePt/Au

superlattice films. J. Phys. D.; Appl. Phys. 41, 245003 (2008).

28. Kim, S. et al. Magnetic droplet nucleation with a homochiral Neel domain wall.

Phys. Rev. B. 95, 220402 (2017).

29. Kim, S. et al. Correlation of the Dzyaloshinskii-Moriya interaction with Heisenberg

exchange and orbital asphericity. Nat. Commun. 9, 1648 (2018).

30. Pizzini, S. et al. Chirality-Induced asymmetric magnetic nucleation in Pt/Co/AlOx

ultrathin microstructures. Phys. Rev. Lett. 113, 047203 (2014).

31. Eyrich, C. et al. Effects of substritution on the exchange stiffness and magnetization of Co films. Phys. Rev. B 90, 235408 (2014).

32. Shim, J. H. et al. Ultrafast dynamics of exchange stiffness in Co/Pt multilayer.

Commun. Phys. 2, 74 (2020).

33. Ado, I. A. et al. Chiral ferromagnetism beyond Lifshitz invariants. Phys. Rev. B 101,

161403(R) (2020).

34. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made

simple. Phys. Rev. Lett. 77, 3865 (1996).

35. Herring, C. Exchange Interactions Among Itinerant Electrons, in Magnetism, Vol.

IV, (eds Rado, G. T. & Suhl, H. (Academic Press, 1966).

36. Sandratskii, L. M. Noncollinear magnetism in itinerant-electron systems: theory

and applications. Adv. Phys. 47, 91 (1998).

ACKNOWLEDGEMENTS

Authors gratefully acknowledge prof. Se Kwon Kim for the fruitful discussion. Financial

support from the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant No.

15H05702 is gratefully acknowledged. T.O. was supported by the Collaborative Research

Program of the Institute for Chemical Research, Kyoto University. S.K. was supported by

the Basic Research Laboratory Program through the National Research Foundation of

Korea (NRF) funded by the MSIT(NRF-2018R1A4A1020696, and NRF-2019R1C1C1010345).

A.-M.P. is also supported by Institut Teknologi Bandung through P3MI-ITB 2020 research

grant. Computations were performed at Research Institute for Information Technology,

Kyushu University.

AUTHOR CONTRIBUTIONS

S.K., A.M.P., and T.O. designed the research, K.Y. fabricated the SLs, W.S.H. carried out

the device fabrication, XRR and electrical measurements, W.S.H, K.K., S.K., and T.O.

analyzed experimental data. A.M.P., S.R., and K.N. carried out and analyzed the DFT

calculations. W.S.H., A.M.P., S.K., and T.O. wrote the manuscript with input from all the

authors.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to A.-M.P., S.K. or T.O.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2021

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

npj Computational Materials (2021) 129

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る