リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Optimized sonoreactor for accelerative amyloid-fibril assays through enhancement of primary nucleation and fragmentation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Optimized sonoreactor for accelerative amyloid-fibril assays through enhancement of primary nucleation and fragmentation

Nakajima, Kichitaro 大阪大学

2021.03.03

概要

Ultrasonication to supersaturated protein solutions forcibly forms amyloid fibrils, thereby allowing the early-stage diagnosis for amyloidoses. Previously, we constructed a high-throughput sonoreactor to investigate features of the amyloid-fibril nucleation. Although the instrument substantiated the ultrasonication efficacy, several challenges remain; the key is the precise control of the acoustic field in the reactor, which directly affects the fibril-formation reaction. In the present study, we develop the optimized sonoreactor for the amyloid-fibril assay, which improves the reproducibility and controllability of the fibril formation. Using β2-microglobulin, we experimentally demonstrate that achieving identical acoustic conditions by controlling oscillation amplitude and frequency of each transducer results in identical fibril-formation behavior across 36 solutions. Moreover, we succeed in detecting the 100-fM seeds using the developed sonoreactor at an accelerated rate. Finally, we reveal that the acceleration of the fibril-formation reaction with the seeds is achieved by enhancing the primary nucleation and the fibril fragmentation through the analysis of the fibril-formation kinetics. These results demonstrate the efficacy of the developed sonoreactor for the diagnosis of amyloidoses owing to the accelerative seed detection and the possibility for further early-stage diagnosis even without seeds through the accelerated primary nucleation.

参考文献

[1] D.S. Eisenberg, M.R. Sawaya, Structural studies of amyloid proteins at the molecular level, Annu. Rev. Biochem. 86 (2017) 69–95.

[2] F. Chiti, C.M. Dobson, Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem. 75 (2006) 333–366.

[3] M. Bucciantini, E. Giannoni, F. Chiti, F. Baroni, N. Taddei, G. Ramponi, C. M. Dobson, M. Stefani, Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases, Nature 416 (2002) 507–511.

[4] A. Lorenzo, B.A. Yankner, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red, Proc. Natl. Acad. Sci. U.S.A. 91 (1994) 12243–12247.

[5] C. Liu, M. Zhao, L. Jiang, P.-N. Cheng, J. Park, M.R. Sawaya, A. Pensalfini, D. Gou, A.J. Berk, C.G. Glabe, J. Nowick, D. Eisenberg, Out-of-register β-sheets suggest a pathway to toxic amyloid aggregates, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 20913–20918.

[6] R.J. Bateman, C. Xiong, T.L. Benzinger, A.M. Fagan, A. Goate, N.C. Fox, D. S. Marcus, N.J. Cairns, X. Xie, T.M. Blazey, D.M. Holtzman, A. Santacruz, V. Buckles, A. Oliver, K. Moulder, P.S. Aisen, B. Ghetti, W.E. Klunk, E. McDade, R. N. Martins, C.L. Masters, R. Mayeux, J.M. Ringman, M.N. Rossor, P.R. Schofield, R. A. Sperling, S. Salloway, J.C. Morris, Clinical and biomarker changes in dominantly inherited Alzheimer’s disease, N. Engl. J. Med. 367 (2012) 795–804.

[7] A.M. Morris, M.A. Watzky, J.N. Agar, R.G. Finke, Fitting neurological protein aggregation kinetic data via a 2-step, minimal/’Ockham’s razor’ model: The Finke- Watzky mechanism of nucleation followed by autocatalytic surface growth, Biochemistry 47 (2008) 2413–2427.

[8] J. Nývlt, Kinetics of nucleation in solutions, J. Cryst. Growth 3–4 (1968) 377–383.

[9] G. Coquerel, Crystallization of molecular systems from solution: phase diagrams, supersaturation and other basic concepts, Chem. Soc. Rev. 43 (2014) 2286–2300.

[10] J.T. Jarrett, P.T. Lansbury, Seeding ’one-dimensional crystallization’ of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73 (6) (1993) 1055–1058.

[11] H. Naiki, K. Nakakuki, First-order kinetic model of Alzheimer’s beta-amyloid fibril extension in vitro, Lab. Invest. 74 (1996) 374–383.

[12] T. Ban, K. Yamaguchi, Y. Goto, Direct observation of amyloid fibril growth, propagation, and adaptation, Acc. Chem. Res. 39 (2006) 663–670.

[13] T. Ikenoue, Y.-H. Lee, J. Kardos, H. Yagi, T. Ikegami, H. Naiki, Y. Goto, Heat of supersaturation-limited amyloid burst directly monitored by isothermal titration calorimetry, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 6654–6659.

[14] N. Salvadores, M. Shahnawaz, E. Scarpini, F. Tagliavini, C. Soto, Detection of misfolded Aβoligomers for sensitive biochemical diagnosis of Alzheimer’s disease, Cell Rep. 7 (2014) 261–268.

[15] M.A. Metrick, N. do Carmo Ferreira, E. Saijo, A.G. Hughson, A. Kraus, C. Orrú, M. W. Miller, G. Zanusso, B. Ghetti, M. Vendruscolo, B. Caughey, Million-fold sensitivity enhancement in proteopathic seed amplification assays for biospecimens by Hofmeister ion comparisons, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 23029–23039.

[16] M. Shahnawaz, A. Mukherjee, S. Pritzkow, N. Mendez, P. Rabadia, X. Liu, B. Hu, A. Schmeichel, W. Singer, G. Wu, A.L. Tsai, H. Shirani, K.P.R. Nilsson, P.A. Low, C. Soto, Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy, Nature 578 (2020) 273–277.

[17] J. Bieschke, J. Russ, R.P. Friedrich, D.E. Ehrnhoefer, H. Wobst, K. Neugebauer, E. E. Wanker, EGCG remodels mature α-synuclein and amyloid-βfibrils and reduces cellular toxicity, Proc. Natl. Acad. Sci. U.S.A. 107 (17) (2010) 7710–7715.

[18] J. Habchi, S. Chia, C. Galvagnion, T.C. Michaels, M.M. Bellaiche, F.S. Ruggeri, M. Sanguanini, I. Idini, J.R. Kumita, E. Sparr, S. Linse, C.M. Dobson, T.P. Knowles, M. Vendruscolo, Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes, Nat. Chem. 10 (6) (2018) 673–683.

[19] Y. Ohhashi, M. Kihara, H. Naiki, Y. Goto, Ultrasonication-induced amyloid fibril formation of β2-microglobulin, J. Biol. Chem. 280 (2005) 32843–32848.

[20] M. So, H. Yagi, K. Sakurai, H. Ogi, H. Naiki, Y. Goto, Ultrasonication-dependent acceleration of amyloid fibril formation, J. Mol. Biol. 412 (4) (2011) 568–577.

[21] A. Umemoto, H. Yagi, M. So, Y. Goto, High-throughput analysis of ultrasonication- forced amyloid fibrillation reveals the mechanism underlying the large fluctuation in the lag time, J. Biol. Chem. 289 (2014) 27290–27299.

[22] S. Nomura, K. Murakami, Y. Sasaki, Streaming induced by ultrasonic vibration in a water vessel, Jpn. J. Appl. Phys. 39 (2000) 3636–3640.

[23] K. Nakajima, H. Ogi, K. Adachi, K. Noi, M. Hirao, H. Yagi, Y. Goto, Nucleus factory on cavitation bubble for amyloid βfibril, Sci. Rep. 6 (2016) 1–10.

[24] K. Nakajima, M. So, K. Takahashi, Y.-I. Tagawa, M. Hirao, Y. Goto, H. Ogi, Optimized ultrasonic irradiation finds out ultrastable Aβ1-40 oligomers, J. Phys. Chem. B 121 (2017) 2603–2613.

[25] M. Hoshino, H. Katou, Y. Hagihara, K. Hasegawa, H. Naiki, Y. Goto, Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange, Nat. Struct. Biol. 9 (2002) 332–336.

[26] T. Le Marchand, M. De Rosa, N. Salvi, B.M. Sala, L.B. Andreas, E. Barbet-Massin, P. Sormanni, A. Barbiroli, R. Porcari, C. Sousa Mota, D. De Sanctis, M. Bolognesi, L. Emsley, V. Bellotti, M. Blackledge, C. Camilloni, G. Pintacuda, S. Ricagno, Conformational dynamics in crystals reveal the molecular bases for D76N beta-2 microglobulin aggregation propensity, Nat. Commun. 9 (2018) 1–11.

[27] Y. Goto, H. Ogi, M. So, K. Ikenaka, H. Mochizuki, S. Hashimoto, Ultrasound generation member, ultrasound emission device, and ultrasonic modification observation devise, wo2019003601 (2019).

[28] H. Naiki, K. Higuchi, M. Hosokawa, T. Takeda, Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T, Anal. Biochem. 177 (1989) 244–249.

[29] T. Chiba, Y. Hagihara, T. Higurashi, K. Hasegawa, H. Naiki, Y. Goto, Amyloid fibril formation in the context of full-length protein: Effects of proline mutations on the amyloid fibril formation of β2-microglobulin, J. Biol. Chem. 278 (2003) 47016–47024.

[30] S.K. Maji, M.H. Perrin, M.R. Sawaya, S. Jessberger, K. Vadodaria, R.A. Rissman, P. S. Singru, K.P.R. Nilsson, R. Simon, D. Schubert, D. Eisenberg, J. Rivier, P. Sawchenko, W. Vale, R. Riek, Functional amyloids as natural storage of peptide hormones in pituitary secretory granules, Science 325 (2009) 328–332.

[31] H. Yagi, K. Hasegawa, Y. Yoshimura, Y. Goto, Acceleration of the depolymerization of amyloid βfibrils by ultrasonication, Biochim. Biophys. Acta 2013 (1834) 2480–2485.

[32] T.P.J. Knowles, C.A. Waudby, G.L. Devlin, S.I.A. Cohen, A. Aguzzi, M. Vendruscolo, E.M. Terentjev, M.E. Welland, C.M. Dobson, An analytical solution to the kinetics of breakable filament assembly, Science 326 (2009) 1533–1537.

[33] K. Uesugi, H. Ogi, M. Fukushima, M. So, H. Yagi, Y. Goto, M. Hirao, Mechanisms of ultrasonically induced fibrillation of amyloid β1—40 peptides, Jpn. J. Appl. Phys. 52 (2013) 07HE10.

[34] Y. Yoshimura, Y. Lin, H. Yagi, Y.-H. Lee, H. Kitayama, K. Sakurai, M. So, H. Ogi, H. Naiki, Y. Goto, Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation, Proc. Natl. Acad. Sci. U.S. A. 109 (2012) 14446–14451.

[35] M. Adachi, M. So, K. Sakurai, J. Kardos, Y. Goto, Supersaturation-limited and unlimited phase transitions compete to produce the pathway complexity in amyloid fibrillation, J. Biol. Chem. 290 (2015) 18134–18145.

[36] S. Noda, M. So, M. Adachi, J. Kardos, Y. Akazawa-Ogawa, Y. Hagihara, Y. Goto, Thioflavin T-silent denaturation intermediates support the main-chain-dominated architecture of amyloid fibrils, Biochemistry 55 (2016) 3937–3948.

[37] J. Hoshino, K. Yamagata, S. Nishi, S. Nakai, I. Masakane, K. Iseki, Y. Tsubakihara, Significance of the decreased risk of dialysis-related amyloidosis now proven by results from Japanese nationwide surveys in 1998 and 2010, Nephrol. Dial. Transpl. 31 (2015) 595–602.

[38] A.K. Buell, C. Galvagnion, R. Gaspar, E. Sparr, M. Vendruscolo, T.P.J. Knowles, S. Linse, C.M. Dobson, Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 7671–7676.

[39] M. Shahnawaz, T. Tokuda, M. Waragai, N. Mendez, R. Ishii, C. Trenkwalder, B. Mollenhauer, C. Soto, Development of a Biochemical Diagnosis of Parkinson Disease by Detection of α-Synuclein Misfolded Aggregates in Cerebrospinal Fluid, JAMA Neurology 74 (2017) 163–172.

[40] E.K. Hill, B. Krebs, D.G. Goodall, G.J. Howlett, D.E. Dunstan, Shear flow induces amyloid fibril formation, Biomacromolecules 7 (2006) 10–13.

[41] M. To¨rnquist, T.C.T. Michaels, K. Sanagavarapu, X. Yang, G. Meisl, S.I.A. Cohen, T. P.J. Knowles, S. Linse, Secondary nucleation in amyloid formation, Chem. Commun. 54 (2018) 8667–8684.

[42] J. Hofrichter, P.D. Ross, W.A. Eaton, Supersaturation in sickle cell hemoglobin solutions, Proc. Natl. Acad. Sci. U.S.A. 73 (1976) 3035–3039.

[43] M. So, D. Hall, Y. Goto, Revisiting supersaturation as a factor determining amyloid fibrillation, Curr. Opin. Struct. Biol. 36 (2016) 32–39.

[44] B.W. Zeiger, K.S. Suslick, Sonofragmentation of molecular crystals, J. Am. Chem. Soc. 133 (2011) 14530–14533.

[45] H. Okumura, S.G. Itoh, Amyloid fibril disruption by ultrasonic cavitation: Nonequilibrium molecular dynamics simulations, J. Am. Chem. Soc. 136 (2014) 10549–10552.

[46] E. Chatani, Y.-H. Lee, H. Yagi, Y. Yoshimura, H. Naiki, Y. Goto, Ultrasonication- dependent production and breakdown lead to minimum-sized amyloid fibrils, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 11119–11124.

[47] K. Nakajima, D. Nishioka, M. Hirao, M. So, Y. Goto, H. Ogi, Drastic acceleration of fibrillation of insulin by transient cavitation bubble, Ultrason. Sonochem. 36 (2017) 206–211.

[48] L. Jean, C. Lee, D. Vaux, Enrichment of amyloidogenesis at an air-water interface, Biophys. J. 102 (5) (2012) 1154–1162.

[49] A.K. Srivastava, J.M. Pittman, J. Zerweck, B.S. Venkata, P.C. Moore, J. R. Sachleben, S.C. Meredith, β-Amyloid aggregation and heterogeneous nucleation, Protein Sci. 28 (2019) 1567–1581.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る