リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pseudo-Nambu-Goldstone dark matter from gauged U(1)_B-L symmetry」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pseudo-Nambu-Goldstone dark matter from gauged U(1)_B-L symmetry

Abe, Yoshihiko アベ, ヨシヒコ Toma, Takashi 藤間, 崇 トウマ, タカシ Tsumura, Koji 津村, 浩二 ツムラ, コウジ 九州大学

2020.05.12

概要

A pseudo-Nambu-Goldstone boson (pNGB) is an attractive candidate for dark matter since the current severe limits of dark matter direct detection experiments are naturally evaded by its nature. We cons

この論文で使われている画像

参考文献

[1] E. Corbelli and P. Salucci, The Extended Rotation Curve and the Dark Matter Halo of M33,

Mon. Not. Roy. Astron. Soc. 311 (2000) 441 [astro-ph/9909252] [INSPIRE].

[2] Y. Sofue and V. Rubin, Rotation curves of spiral galaxies, Ann. Rev. Astron. Astrophys. 39

(2001) 137 [astro-ph/0010594] [INSPIRE].

[3] R. Massey, T. Kitching and J. Richard, The dark matter of gravitational lensing, Rept. Prog.

Phys. 73 (2010) 086901 [arXiv:1001.1739] [INSPIRE].

[4] Planck collaboration, Planck 2018 results. VI. Cosmological parameters,

arXiv:1807.06209 [INSPIRE].

[5] S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the

Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging

Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].

[6] LUX collaboration, Limits on spin-dependent WIMP-nucleon cross section obtained from the

complete LUX exposure, Phys. Rev. Lett. 118 (2017) 251302 [arXiv:1705.03380] [INSPIRE].

[7] PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II

Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].

– 13 –

JHEP05(2020)057

The couplings between the heavy gauge boson Z 0 and the (axial) vector currents of the SM

fermion f is defined by

LZ 0 f f = −Zµ0 f γ µ gVf + gA

γ5 f,

(A.16)

[8] XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of

XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

[9] M. Freytsis and Z. Ligeti, On dark matter models with uniquely spin-dependent detection

possibilities, Phys. Rev. D 83 (2011) 115009 [arXiv:1012.5317] [INSPIRE].

[10] S. Ipek, D. McKeen and A.E. Nelson, A Renormalizable Model for the Galactic Center

Gamma Ray Excess from Dark Matter Annihilation, Phys. Rev. D 90 (2014) 055021

[arXiv:1404.3716] [INSPIRE].

[11] G. Arcadi, M. Lindner, F.S. Queiroz, W. Rodejohann and S. Vogl, Pseudoscalar Mediators:

A WIMP model at the Neutrino Floor, JCAP 03 (2018) 042 [arXiv:1711.02110] [INSPIRE].

[13] T. Abe, M. Fujiwara and J. Hisano, Loop corrections to dark matter direct detection in a

pseudoscalar mediator dark matter model, JHEP 02 (2019) 028 [arXiv:1810.01039]

[INSPIRE].

[14] T. Abe, M. Fujiwara, J. Hisano and Y. Shoji, Maximum value of the spin-independent cross

section in the 2HDM+a, JHEP 01 (2020) 114 [arXiv:1910.09771] [INSPIRE].

[15] V. Barger, M. McCaskey and G. Shaughnessy, Complex Scalar Dark Matter vis-`

a-vis

CoGeNT, DAMA/LIBRA and XENON100, Phys. Rev. D 82 (2010) 035019

[arXiv:1005.3328] [INSPIRE].

[16] C. Gross, O. Lebedev and T. Toma, Cancellation Mechanism for Dark-Matter-Nucleon

Interaction, Phys. Rev. Lett. 119 (2017) 191801 [arXiv:1708.02253] [INSPIRE].

[17] N. Fonseca, R. Zukanovich Funchal, A. Lessa and L. Lopez-Honorez, Dark Matter

Constraints on Composite Higgs Models, JHEP 06 (2015) 154 [arXiv:1501.05957]

[INSPIRE].

[18] I. Brivio et al., Non-linear Higgs portal to Dark Matter, JHEP 04 (2016) 141

[arXiv:1511.01099] [INSPIRE].

[19] D. Barducci et al., Monojet searches for momentum-dependent dark matter interactions,

JHEP 01 (2017) 078 [arXiv:1609.07490] [INSPIRE].

[20] R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, Charged Composite Scalar Dark Matter,

JHEP 11 (2017) 094 [arXiv:1707.07685] [INSPIRE].

[21] R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, Dark matter shifts away from direct

detection, JCAP 11 (2018) 050 [arXiv:1809.09106] [INSPIRE].

[22] M. Ruhdorfer, E. Salvioni and A. Weiler, A Global View of the Off-Shell Higgs Portal,

SciPost Phys. 8 (2020) 027 [arXiv:1910.04170] [INSPIRE].

[23] M. Ramos, Non-Minimal Composite Dark Matter, arXiv:1912.11061 [INSPIRE].

[24] D. Azevedo, M. Duch, B. Grzadkowski, D. Huang, M. Iglicki and R. Santos, One-loop

contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model, JHEP

01 (2019) 138 [arXiv:1810.06105] [INSPIRE].

[25] K. Ishiwata and T. Toma, Probing pseudo Nambu-Goldstone boson dark matter at loop level,

JHEP 12 (2018) 089 [arXiv:1810.08139] [INSPIRE].

[26] K. Huitu, N. Koivunen, O. Lebedev, S. Mondal and T. Toma, Probing pseudo-Goldstone

dark matter at the LHC, Phys. Rev. D 100 (2019) 015009 [arXiv:1812.05952] [INSPIRE].

– 14 –

JHEP05(2020)057

[12] N.F. Bell, G. Busoni and I.W. Sanderson, Loop Effects in Direct Detection, JCAP 08 (2018)

017 [Erratum ibid. 01 (2019) E01] [arXiv:1803.01574] [INSPIRE].

[27] J.M. Cline and T. Toma, Pseudo-Goldstone dark matter confronts cosmic ray and collider

anomalies, Phys. Rev. D 100 (2019) 035023 [arXiv:1906.02175] [INSPIRE].

[28] C. Arina, A. Beniwal, C. Degrande, J. Heisig and A. Scaffidi, Global fit of

pseudo-Nambu-Goldstone Dark Matter, arXiv:1912.04008 [INSPIRE].

[29] T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry,

Nucl. Phys. B 307 (1988) 93 [INSPIRE].

[30] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev.

D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

[32] T. Bandyopadhyay, G. Bhattacharyya, D. Das and A. Raychaudhuri, Reappraisal of

constraints on Z 0 models from unitarity and direct searches at the LHC, Phys. Rev. D 98

(2018) 035027 [arXiv:1803.07989] [INSPIRE].

[33] V. Mart´ın Lozano, J.M. Moreno and C.B. Park, Resonant Higgs boson pair production in the

hh → bb W W → bb`+ ν`− ν decay channel, JHEP 08 (2015) 004 [arXiv:1501.03799]

[INSPIRE].

[34] A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05

(2015) 057 [arXiv:1502.01361] [INSPIRE].

[35] T. Charnock, A. Avgoustidis, E.J. Copeland and A. Moss, CMB constraints on cosmic

strings and superstrings, Phys. Rev. D 93 (2016) 123503 [arXiv:1603.01275] [INSPIRE].

[36] A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and

beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082]

[INSPIRE].

[37] A. Semenov, LanHEP — A package for automatic generation of Feynman rules from the

Lagrangian. Version 3.2, Comput. Phys. Commun. 201 (2016) 167 [arXiv:1412.5016]

[INSPIRE].

[38] G. B´elanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0:

Freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].

[39] CMS collaboration, Search for invisible decays of a Higgs boson produced through vector

boson fusion in proton-proton collisions at s = 13 TeV, Phys. Lett. B 793 (2019) 520

[arXiv:1809.05937] [INSPIRE].

[40] ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the

ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801 [arXiv:1904.05105] [INSPIRE].

[41] ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay

rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC

pp collision data at s = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

[42] C.-Y. Chen, S. Dawson and I.M. Lewis, Exploring resonant di-Higgs boson production in the

Higgs singlet model, Phys. Rev. D 91 (2015) 035015 [arXiv:1410.5488] [INSPIRE].

[43] Fermi-LAT and DES collaborations, Searching for Dark Matter Annihilation in Recently

Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110

[arXiv:1611.03184] [INSPIRE].

– 15 –

JHEP05(2020)057

[31] M.G. Baring, T. Ghosh, F.S. Queiroz and K. Sinha, New Limits on the Dark Matter Lifetime

from Dwarf Spheroidal Galaxies using Fermi-LAT, Phys. Rev. D 93 (2016) 103009

[arXiv:1510.00389] [INSPIRE].

[44] CTA collaboration, Prospects for Indirect Dark Matter Searches with the Cherenkov

Telescope Array (CTA), PoS(ICRC2015)1203 [arXiv:1508.06128] [INSPIRE].

[45] X. Bai et al., The Large High Altitude Air Shower Observatory (LHAASO) Science White

Paper, arXiv:1905.02773 [INSPIRE].

[46] D.-Z. He, X.-J. Bi, S.-J. Lin, P.-F. Yin and X. Zhang, Expectation on LHAASO sensitivity to

decaying dark matter signatures from dwarf galaxies gamma-ray emission,

arXiv:1910.05017 [INSPIRE].

JHEP05(2020)057

– 16 –

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る