リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the myoglobin reduction mechanism in red-fleshed fish meat」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the myoglobin reduction mechanism in red-fleshed fish meat

Xu Yanli 東北大学

2022.03.25

概要

As an indicator of the freshness and quality, meat color can influence consumers acceptability and purchase decisions (Al-Shaibani et al. 1977b). Meat color greatly depends on the content and state of muscle pigment, most of which is myoglobin (Mb). Mb is an oxygen-binding heme protein, responsible for intracellular oxygen storage, buffering intracellular oxygen concentrations and facilitation of oxygen diffusion. Depending on its redox state, Mb exists as either of three derivatives, namely, deoxymyoglobin (deoxyMb), oxymyoglobin (oxyMb) and metmyoglobin (metMb). DeoxyMb contains ferrous iron at the center of heme and thus gives dark purplish red color. OxyMb is formed by oxygenation of deoxyMb, which has a diatomic oxygen attached to the sixth coordination site of the ferrous iron. Therefore, saturating Mb with oxygen provides attractive bright-red color to meat because of oxyMb formation. The oxidation of the ferrous form to a ferric state results in the formation of brown metMb. MetMb has a water molecule bound at the sixth coordination site of the ferric iron, which is incapable of binding oxygen. The formation and accumulation of metMb are associated with meat discoloration (AMSA 2012). Generally, in living muscles, metMb is not accumulated, as metMb-reducing enzyme systems maintain the physiological role of Mb and could be relevant to the maintenance of fresh meat color. In this connection, the presence of NADH-cytochrome b5 reductase and an electron carrier (cytochrome b5 located in the outer membrane of mitochondria) has been verified in the mitochondrial fraction of bovine muscle (Arihara et al. 1995). Furthermore, mitochondria have an ability to keep color stability of beef via mitochondria-mediated metMb reducing activity. Although the researches on the role of mitochondria in beef color and its stability have been frequently discussed, very little information is available on mitochondrial function in fish muscle in relation with metMb reduction and meat color stability. Many migratory fish species, such as tuna, have considerable amount of Mb, and consequently, undesirable fast meat discoloration is encountered when improperly stored.

Therefore, the objective of this study was to explore the role of mitochondrial fraction in metMb reduction in tuna meat.

参考文献

Al-Shaibani, K., Price, R., Brown, W. (1977a). Purification of metmyoglobin reductase from bluefin tuna. J. Food Sci., 42, 1013-1015.

Al-Shaibani, K., Price, R., Brown, W. (1977b). Enzymatic reduction of metmyoglobin in fish. J. Food Sci., 42, 1156-1158.

American Meat Science Association (AMSA). (2012). Section II: Myoglobin Chemistry. In American Meat Science Association (Ed.), Meat Color Measurement Guidelines (pp. 1-135). Champaign, Illinois, USA.

Arihara, K., Itoh, M., Kondo, Y. (1995). Localization of metmyoglobin-reducing enzyme (NADH-cytochrome b5 reductase) system components in bovine skeletal muscle. Meat Sci., 39, 205-213.

Bailey, J. R. and Driedzic, W. R. (1992). Lack of correlation between cardiac myoglobin concentration and in vitro metmyoglobin reductase activity. J. Exp. Biol., 173, 301-306.

Bekhit, A. E. D., Geesink, G. H., Morton, J. D., Bickerstaffe, R. (2001). Metmyoglobin reducing activity and colour stability of ovine longissimus muscle. Meat Sci., 57, 427-435.

Bekhit, A. E. D. and Faustman, L. C. (2005). Review: Metmyoglobin reducing activity. Meat Sci., 71, 407-439.

Belskie, K. M., Van Buiten, C. B., Ramanathan, R., Mancini, R. A. (2015). Reverse electron transport effects on NADH formation and metmyoglobin reduction. Meat Sci., 105, 89-92.

Boocock, G, Danpure, C. J., Popplewell, D. S., Taylor, D. M. (1970) The subcellular distribution of plutonium in rat liver. Rad. Res., 42, 381-396.

Brown, W. D. and Snyder, H. E. (1969). Nonenzymatic reduction and oxidation of myoglobin and hemoglobin by nicotinamide adenine dinucleotides and flavins. J. Biol. Chem., 244, 6702-6706.

Carballo, J., Cofrades, S., Solas, M. T., & Jiménez-Colmenero, F. (2000). High pressure/thermal treatment of meat batters prepared from freeze-thawed pork. Meat Sci., 54, 357-364.

Chaijan, M., Benjakul, S., Visessanguan, W., Faustman, C. (2005). Changes of pigments and color in sardine (Sardinella gibbosa) and mackerel (Rastrelliger kanagurta) muscle during iced storage. Food Chem., 93, 607-617.

Chan, W. K. M., Hakkarainen, K., Faustman, C., Schaefer, D. M., Scheller, K. K., Liu, Q. (1996). Dietary vitamin E effect on color stability and sensory assessment of spoilage in three beef muscles. Meat Sci., 42, 387-399.

Chiou, T. K., Pong, C. Y., Nieh, F. P., Jiang, S. T. (2001). Effect of met-myoglobin reductase on the color stability of bluefin tuna during refrigerated storage. Fish. Sci., 67, 694-702.

Chow, C. J., Ochiai, Y., Watabe, S., Hashimoto, K. (1988). Effect of freezing and thawing on the discoloration of tuna meat. Nippon Suisan Gakkaishi, 54, 639-648.

Dean, R. W. and Ball, C. O. (1960). Analysis of the myoglobin fractions on the surface of beef cut. Food Technol., 14, 271-285.

Echevarne, C., Renerre, M., Labas, R. (1990). Metmyoglobin reductase activity in bovine muscles. Meat Sci., 27, 161-172.

English, A. R., Mafi, G. G., Van Overbeke, D. L., Ramanathan, R. (2016). Effects of extended aging and modified atmospheric packaging on beef top loin steak color. J. Anim. Sci., 94, 1727-1737.

Faustman, C. and Cassens, R. G. (1990). The biochemical basis for discoloration in fresh meat: A review. J. Muscle Foods, 1, 217-243.

Giddings, G. G. and Hultin, H. O. (1974). Reduction of ferrimyoglobin in meat. CRC Crit. Rev. Food Technol., 5, 143-173.

Giddings, G. G. (1977). The basis of color in muscle foods. CRC Crit. Rev. Food Sci. Nutr., 9, 81-114.

Güray, T. and Arinç, E. (1990). Purification of NADH-cytochrome b5 reductase from sheep lung and its electrophoretic spectral and some other properties. Int. J. Biochem., 232, 1029-1035.

Güray, T. and Arinç, E. (1991). Kinetic properties of purified sheep lung microsomal NADH-cytochrome b5 reductase. Int. J. Biochem., 23, 1315-1320.

Hagler, L., Coppes, Jr R. I., Herman, R. H. (1979). Metmyoglobin reductase: Identification and purification of a reduced nicotinamide adenine dinucleotide- dependent enzyme from bovine heart which reduces metmyoglobin. J. Biol. Chem., 254, 6505-6514.

Hansen, E., Juncher, D., Henckel, P., Karlsson, A., Bertelsen, G., Skibsted, L. H. (2004). Oxidative stability of chilled pork chops following long term freeze storage. Meat Sci., 68, 479-484.

Hegesh, E. and Avron, M. (1967). The enzymatic reduction of ferrihemoglobin. I. The reduction of ferrihemoglobin in red blood cells and hemolysates. Biochim Biophys Acta, 146, 91-101.

Hutchins, B. K., Liu, T. H. P., Watts, B. M. (1967). Effect of additives and refrigeration on reducing activity, metmyoglobin and malonaldehyde in raw ground beef. J. Food Sci., 32, 214-217.

Ke, Y., Mitacek, R. M., Abraham, A., Mafi, G. G., VanOverbeke, D. L., DeSilva, U., Ramanathan, R. (2017). Effects of muscle-specific oxidative stress on cytochrome c release and oxidation-reduction potential properties. J. Agric. Food Chem., 65, 7749-7755.

Kim, Y. H., Hunt, M. C., Mancini, R. A., Seyfert, M., Loughin, M. T., Kropf, D. H., Smith, J. S. (2006). Mechanism for lactate-color stabilization in injection-enhanced beef. J. Agric. Food Chem., 54, 7856-7862.

Krzywicki K. (1982). The determination of haem pigments in meat. Meat Sci., 7, 29- 36.

Kuma, F., Prough, R. A., Masters, B. S. (1976). Studies on methemoglobin reductase. Immunochemical similarity of soluble methemoglobin reductase and cytochrome b5 of human erythrocytes with NADH-cytochrome b5 reductase and cytochrome b5 of rat liver microsomes. Arch. Biochem. Biophys., 172, 600-607.

Lanari, M.C. & Cassens, R.G. (1991). Mitochondrial activity and beef muscle color stability. J. Food Sci., 56, 1476-1479.

Ledward, D. A. (1985). Post-slaughter influences on the formation of metmyoglobin in beef muscles. Meat Sci., 15, 149-171.

Levy, M. J., Livingston, D. J., Criddle, R. S., Brown, W. D. (1985). Isolation and characterization of metmyoglobin reductase from yellowfin tuna (Thunnus albacares). Comp. Biochem. Physiol., 81, 809-814.

Livingston, D. J., La Mar, G. N., Brown, W. D. (1983). Myoglobin diffusion in bovine heart muscle. Science, 220, 71-73.

Livingston, D. J., Mc Lachlan, S. J., La Mar, G. N., Brown, W. D. (1985). Myoglobin: cytochrome b5 interactions and the kinetic mechanism of metmyoglobin reductase. J. Biol. Chem., 260, 15699-15707.

Madhavi, D. L. and Carpenter, C. E. (1993). Aging and processing affect color, metmyoglobin reductase and oxygen consumption of beef muscles. J. Food Sci., 58, 939-942.

Mancini, R. A. and Hunt, M. C. (2005). Current research in meat color. Meat Sci., 71, 100-121.

Mancini, R. A. and Ramanathan, R. (2014). Effects of postmortem storage time on color and mitochondria in beef. Meat Sci., 98, 65-70.

Mancini, R.A., Belskie, K., Suman, S.P., & Ramanathan R. (2018). Muscle-specific mitochondrial functionality and its influence on fresh beef color stability. J. Food Sci., 83, 2077-2082.

Matthews, A. D. (1983). Muscle colour deterioration in iced and frozen stored bonito, yellowfin and skipjack tuna caught in Seychelles waters. Food Technol., 18, 387-392.

McCormick R.J. (1994). Structure and Properties of Tissues. In Kinsman, D. W., Kotula, A. W., Breidenstein, B. C. (Eds.), Muscle Foods (pp. 25-62). Springer, Boston, MA.

Mihara, K., Sato, R. (1975). Purification and properties of the intact form of NADH-cytochrome b5 reductase from rabbit liver microsomes. J. Biochem., 78, 1057-1073. Mihara, K., Sato, R. (1978). Detergent-solubilized NADH-cytochrome b5 reductase. In Fleischer S. and Packer L. (Eds.). Meth. Enzymol. (pp. 102-108). London: Academic Press.

Mikkelsen, A., Juncher, D., Skibsted, L. H. (1999). Metmyoglobin reductase activity in porcine m. longissimus dorsi muscle. Meat Sci., 51, 155-161.

Mitacek, R. M., Ke, Y., Prenni, J. E., Jadeja, R., VanOverbeke, D. L., Mafi, G. G., Ramanathan, R. (2019). Mitochondrial degeneration, depletion of NADH, and oxidative stress decrease color stability of wet-aged beef longissimus steaks. J. Food Sci., 84, 38-50.

Pong, C. Y., Chiou, T. K., Ho, M. L., Jiang, S. T. (2000a). Effect of polyethylene package on the metmyoglobin reductase activity and color of tuna muscle during low temperature storage. Fish. Sci., 66, 384-389.

Pong, C. Y., Chiou, T. K., Nieh, F. P., Jiang, S. T. (2000b). Purification and characterization of metmyoglobin reductase from blue-fin tuna. Fish. Sci., 66, 599- 604.

Ramanathan, R., Mancini, R. A., Maheswarappa, N. B. (2010). Effects of lactate on bovine heart mitochondria-mediated metmyoglobin reduction. J. Agric. Food Chem., 58, 5724-5729.

Ramanathan, R. and Mancini, R. A. (2010). Effects of pyruvate on bovine heart mitochondria-mediated metmyoglobin reduction. Meat Sci., 86, 738-741.

Ramanathan, R., Mancini, R. A., Joseph, P., Yin, S., Tatiyaborworntham, N., Petersson, K. H., Sun, Q., Konda, M. R. (2011). Effects of lactate on ground lamb colour stability and mitochondria-mediated metmyoglobin reduction. Food Chem., 126, 166-171.

Ramanathan, R., Suman, S. P., Faustman, C. (2020). Biomolecular interactions governing fresh meat color in post-mortem skeletal muscle: a review. J. Agric. Food Chem., 68, 12779-12787.

Reddy, L. M. and Carpenter, C. E. (1991). Determination of metmyoglobin reductase activity in bovine skeletal muscles. J. Food Sci., 56, 1161-1164.

Rossi-Fanelli, A., Antonini, E., Mondovi, B. (1957). Enzymic reduction of ferrimyoglobin. Arch. Biochem. Biophys., 68, 341-354.

Sammel, L. M., Hunt, M. C., Kropf, D. H., Hachmeister, K. A., Johnson, D. E. (2002). Comparison of assays for metmyoglobin reducing ability in beef inside and outside semimembranosus muscle. J. Food Sci., 67, 978-984.

Sanders, S. K., Morgan, J. B., Wulf, D. M., Tatum, J. D., Williams, S. N., Smith, G. C. (1997). Vitamin E supplementation of cattle and shelf-life of beef for the Japanese market. J. Anim. Sci., 75, 2634-2640.

Shimizu, C. and Matsuura, F. (1968). Purification and some properties of methemoglobin reductase. Agric. Biol. Chem., 32, 587-592.

Shimizu, C. and Matsuura, F. (1971). Occurrence of a new enzyme reducing metmyoglobin in dolphin muscle. Agric. Biol. Chem., 35, 468-475.

Shirabe, K., Yubisui, T., Borgese, N., Tang, C. Y., Hultquist, D., Takeshita, M. (1992). Enzymatic instability of NADH-cytochrome b5 reductase as a case of hereditary methemoglobinemia type I (Red Cell Type). J. Biol. Chem., 267, 20416-20421.

Sohn, J. H., Taki, Y., Ushio, H., Kohata, T., Shioya, I., Ohshima, T. (2005) Lipid oxidations in ordinary and dark muscles of fish: influences on rancid off-odor development and color darkening of yellowtail flesh during ice storage. J. Food Sci., 70, 490-496.

Spatz, L. and Strittmatter, P. (1973). A form of reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase containing both the catalytic site and an additional hydrophobic membrane-binding segment. J. Biol. Chem., 248, 793-799.

Stewart, M. R., Hutchins, B. K., Zipser, M. W., Watts, B. M. (1965). Enzymatic reduction of metmyoglobin by ground beef. J. Food Sci., 30, 487-491.

Strittmatter, P. and Velick, S. F. (1956). A microsomal cytochrome reductase specific for diphosphopyridne nucleotide. J. Biol. Chem., 221, 277-286.

Strittmatter, P. and Velick, S. F. (1957). The purification and properties of microsomal cytochrome reductase. J. Biol. Chem., 228, 785-799.

Stryer, L. (1995). Biochemistry. Freeman, W. H. and Company. New York.

Suzuki, H., Wada, O., Ono, T., Yamamoto, A., Ono, H., Matsui, H. (1981). The significant role of liver lysosomes on manganese metabolism. Jpn. J. Hyg., 36, 506- 511.

Takesue, S. and Omura, T. (1970a). Solubilization of NADH-cytochrome b5 reductase from liver microsomes by lysosomal digestion. J. Biochem., 67, 259-266.

Takesue, S. and Omura, T. (1970b). Purification and properties of NADH-cytochrome b5 reductase solubilized by lysosomes from rat liver microsomes. J. Biochem., 67, 267-276.

Tamura, M., Yubisui, T., Takeshita, M. (1983). Microsomal NADH-cytochrome b5 reductase of bovine brain: purification and properties. J. Biochem., 94, 1547-1555.

Tang, J., Faustman, C., Hoagland, T. A. (2004). Krzywicki revisited: Equations for spectrophotometric determination of myoglobin redox forms in aqueous meat extracts. J. Food Sci., 69, 717-720.

Tang, J., Faustman, C., Hoagland, T. A., Mancini, R. A., Seyfert, M., Hunt, M. (2005a). Postmortem oxygen consumption by mitochondria and its effects on myoglobin form and stability. J. Agric. Food Chem., 53, 1223-1230.

Tang, J., Faustman, C., Mancini, R. A., Seyfert, M., Hunt, M. C. (2005b). Mitochondrial reduction of metmyoglobin: dependence on the electron transport chain. J. Agr. Food Chem., 53, 5449-5455.

Tang, J., Faustman, C., Mancini, R. A., Seyfert, M., Hunt, M. C. (2006). The effects of freeze-thaw and sonication on mitochondrial oxygen consumption, electron transport chain-linked metmyoglobin reduction, lipid oxidation, and oxymyoglobin oxidation. Meat Sci., 74, 510-515.

Tomasevic, I., Djekic, I., Font-i-Furnols, M., Terjung, N., Lorenzo, J. M. (2021). Recent advances in meat color research. Curr. Opin. Food Sci., 41, 81-87.

Tsvetkov, T., Tsonev, L., Meranzov, N., Minkov, I. (1985). Functional changes in mitochondrial properties as a result of their membrane cryodestruction. II. Influence of freezing and thawing on ATP complex activity of intact liver mitochondria. Cryobiology, 22, 111-118.

Tsvetkov, T., Tsonev, L., Minkov, I. (1986). A quantitative evaluation of the extent of inner mitochondrial membrane destruction after freezing-thawing based on functional studies. Cryobiology, 23, 433-439.

Watts, B. M., Kendrick, J., Zipser, M. W., Hutchins, B., Saleh, B. (1966). Enzymatic reducing pathways in meat. J. Food Sci., 31, 855-862.

Williams, C. H. Jr., (1976). Flavin-containing dehydrogenase. In Boyer P. D. (Ed.). The Enzymes, 13, 89-173. Academic Press. NewYork.

Wittenberg, B. A. and Wittenberg, J. B. (1989). Transport of oxygen in muscle. Physiol. Rev., 51, 857-878.

Xu, Y., Nakano, T., Ochiai, Y. (2021). Metmyoglobin reducing activity in the mitochondrial fraction from the dark muscle of tuna. Food Sci. Technol. Res., 27, 397-403.

Yang, M. X. and Cederbaum, A. I. (1994). Fractionation of liver microsomes with polyethylene glycol and purification of NADH-cytochrome b5 oxidoreductase and cytochrome b5. Arch. Biochem. Biophys., 315, 438-444.

Yubisui, T., Takeshita, M. (1980). Characterization of the purified NADH-cytochrome b5 reductase of human erythrocytes as an FAD-containing enzyme. J. Biol. Chem., 255, 2454-2456.

Zhu, J., Liu, F., Li, X., Dai, R. (2009). Effect of succinate on the metmyoglobin reduction and color stability of beef patties. J. Agric. Food Chem., 57, 5976-5981.

Zimmerman, G. L. and Snyder, H. E. (1969). Meat pigment changes in intact beef samples. J. Food Sci., 34, 258-261.

Zoladek, T., Vaduva, G., Hunter, L. A., Boguta, M., Go, B. D., Martin, N. C., And Hopper, A. K. (1995). Mutations altering the mitochondrial-cytoplasmic distribution of mod5p implicate the actin cytoskeleton and mRNA 3’ ends and/or protein synthesis in mitochondrial delivery. Mol. Cell Biol., 15, 6884-6894.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る