リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mechanisms of length-dependent recognition of viral double-stranded RNA by RIG-I」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mechanisms of length-dependent recognition of viral double-stranded RNA by RIG-I

Im, Jung Hyun Duic, Ivana Yoshimura, Shige H. Onomoto, Koji Yoneyama, Mitsutoshi Kato, Hiroki Fujita, Takashi 京都大学 DOI:10.1038/s41598-023-33208-w

2023.04.18

概要

Retinoic acid-inducible gene I (RIG-I) is the most front-line cytoplasmic viral RNA sensor and induces antiviral immune responses. RIG-I recognizes short double-stranded (dsRNA) (< 500 bp), but not long dsRNA (> 500 bp) to trigger antiviral signaling. Since RIG-I is capable of binding with dsRNA irrespective of size, length-dependent RIG-I signaling remains elusive. Here, we demonstrated that RIG-I bound to long dsRNA with slow kinetics. Remarkably, RIG-I/short dsRNA complex efficiently dissociated in an ATP hydrolysis-dependent manner, whereas RIG-I/long dsRNA was stable and did not dissociate. Our study suggests that the dissociation of RIG-I from RIG-I/dsRNA complex could be a step for efficient antiviral signaling. Dissociated RIG-I exhibited homo-oligomerization, acquiring ability to physically associate with MAVS, and biological activity upon introduction into living cells. We herein discuss common and unique mechanisms of viral dsRNA recognition by RIG-I and MDA5.

この論文で使われている画像

参考文献

1. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.

Nat. Immunol. 5, 730–737. https://​doi.​org/​10.​1038/​ni1087 (2004).

2. Andrejeva, J. et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of

the IFN-β promoter. Proc. Natl. Acad. Sci. U.S.A. 101, 17264–17269. https://​doi.​org/​10.​1073/​pnas.​04076​39101 (2004).

3. Rothenfusser, S. et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible

gene-I. J. Immunol. 175, 5260–5268. https://​doi.​org/​10.​4049/​jimmu​nol.​175.8.​5260 (2005).

4. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988.

https://​doi.​org/​10.​1038/​ni1243 (2005).

Scientific Reports |

Vol:.(1234567890)

(2023) 13:6318 |

https://doi.org/10.1038/s41598-023-33208-w

10

www.nature.com/scientificreports/

5. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein

that activates NF-κB and IRF3. Cell 122, 669–682. https://​doi.​org/​10.​1016/j.​cell.​2005.​08.​012 (2005).

6. Satoh, T. et al. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc. Natl. Acad. Sci. U.S.A. 107,

1512–1517. https://​doi.​org/​10.​1073/​pnas.​09129​86107 (2010).

7. Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma

differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610. https://​doi.​org/​10.​1084/​jem.​20080​091 (2008).

8. Marques, J. T. et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat.

Biotechnol. 24, 559–565. https://​doi.​org/​10.​1038/​nbt12​05 (2006).

9. Duic, I. et al. Viral RNA recognition by LGP2 and MDA5, and activation of signaling through step-by-step conformational changes.

Nucleic Acids Res. 48, 11664–11674. https://​doi.​org/​10.​1093/​nar/​gkaa9​35 (2020).

10. Takahasi, K. et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol. Cell 29,

428–440. https://​doi.​org/​10.​1016/j.​molcel.​2007.​11.​028 (2008).

11. Fujita, T., Shibuyà, H., Hotta, H., Yamanishi, K. & Taniguchi, T. Interferon-β gene regulation: Tandemly repeated sequences of a

synthetic 6 bp oligomer function as a virus-inducible enhancer. Cell 49, 357–367. https://​doi.​org/​10.​1016/​0092-​8674(87)​90288-​

1scies (1987).

12. Myong, S. et al. Cytosolic viral sensor RIG-I is a 5’-triphosphate-dependent translocase on double-stranded RNA. Science 323,

1070–1074. https://​doi.​org/​10.​1126/​scien​ce.​11683​52 (2009).

13. Devarkar, S. C., Schweibenz, B., Wang, C., Marcotrigiano, J. & Patel, S. S. RIG-I Uses an ATPase-powered translocation-throttling

mechanism for kinetic proofreading of RNAs and oligomerization. Mol. Cell 72, 355-368.e4. https://d

​ oi.o

​ rg/1​ 0.1​ 016/j.m

​ olcel.2​ 018.​

08.​021 (2018).

14. Kageyama, M. et al. 55 Amino acid linker between helicase and carboxyl terminal domains of RIG-I functions as a critical repression domain and determines inter-domain conformation. Biochem. Biophys. Res. Commun. 415, 75–81. https://​doi.​org/​10.​1016/j.​

bbrc.​2011.​10.​015 (2011).

15. Ouda, R. et al. Retinoic acid-inducible gene I-inducible miR-23b inhibits infections by minor group rhinoviruses through downregulation of the very low density lipoprotein receptor. J. Biol. Chem. 286, 26210–26219. https://​doi.​org/​10.​1074/​jbc.​M111.​229856

(2011).

16. Yoneyama, M. et al. Shared and unique functions of the DExD/H-Box helicases RIG-I, MDA5, and LGP2 in antiviral innate

immunity. J. Immunol. 175, 2851–2858. https://​doi.​org/​10.​4049/​jimmu​nol.​175.5.​2851 (2005).

17. Takahasi, K. et al. Identification of a new autoinhibitory domain of interferon-beta promoter stimulator-1 (IPS-1) for the tight

regulation of oligomerization-driven signal activation. Biochem. Biophys. Res. Commun. 517, 662–669. https://​doi.​org/​10.​1016/j.​

bbrc.​2019.​07.​099 (2019).

18. Abe, H. et al. Priming phosphorylation of TANK-binding kinase 1 by IkappaB kinase beta Is essential in toll-like receptor 3/4

signaling. Mol Cell Biol 40, 1–14. https://​doi.​org/​10.​1128/​MCB.​00509-​19 (2020).

Acknowledgements

This study was supported by research grants from Japan Agency for Medical Research and Development: Research

Program on Emerging and Re-emerging Infectious Diseases [jp19fk0108081h1001, jp20fk0108081h1202 to F.T.];

Japan Society for the Promotion of Science; Fund for the Promotion of Joint International Research: Fostering

Joint International Research (B) [18KK0232 to F.T.]; Core to Core Program: Grant-in-Aid for Scientific Research

‘B’ [18H02344 to F.T.]. It was also funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy–EXC2151–390873048 and TRR237, and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) EXC 2151: ImmunoSensation2, Project number 390873048;

DFG TRR 237, Project number 369799452 (B22). Funding for open access charge: DFG ImmunoSensation2.

Author contributions

J.I. performed the experiments, analyzed the data, and wrote the initial manuscript. I.D. T.F. and H.K. assisted in

the study design and experiments. S.H.Y supported to use an AFM machine. K.O. and M.Y. assisted in the study

of artificial oligomerization of RIG-I. T.F. directed the project and wrote the complete manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​023-​33208-w.

Correspondence and requests for materials should be addressed to T.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

(2023) 13:6318 |

https://doi.org/10.1038/s41598-023-33208-w

11

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る