リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Massively parallel single-cell genomics of microbiomes in rice paddies」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Massively parallel single-cell genomics of microbiomes in rice paddies

Aoki, Wataru Kogawa, Masato Matsuda, Shuhei Matsubara, Keisuke Hirata, Shintaro Nishikawa, Yohei Hosokawa, Masahito Takeyama, Haruko Matoh, Toru Ueda, Mitsuyoshi 京都大学 DOI:10.3389/fmicb.2022.1024640

2022

概要

Plant growth-promoting microbes (PGPMs) have attracted increasing attention because they may be useful in increasing crop yield in a low-input and sustainable manner to ensure food security. Previous studies have attempted to understand the principles underlying the rhizosphere ecology and interactions between plants and PGPMs using ribosomal RNA sequencing, metagenomic sequencing, and genome-resolved metagenomics; however, these approaches do not provide comprehensive genomic information for individual species and do not facilitate detailed analyses of plant–microbe interactions. In the present study, we developed a pipeline to analyze the genomic diversity of the rice rhizosphere microbiome at single-cell resolution. We isolated microbial cells from paddy soil and determined their genomic sequences by using massively parallel whole-genome amplification in microfluidic-generated gel capsules. We successfully obtained 3, 237 single-amplified genomes in a single experiment, and these genomic sequences provided insights into microbial functions in the paddy ecosystem. Our approach offers a promising platform for gaining novel insights into the roles of microbes in the rice rhizomicrobiome and to develop microbial technologies for improved and sustainable rice production.

この論文で使われている画像

参考文献

and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol. 71,

7271–7278. doi: 10.1128/AEM.71.11.7271-7278.2005

Alpana, S., Vishwakarma, P., Adhya, T. K., Inubushi, K., and Dubey, S. K. (2017).

Molecular ecological perspective of methanogenic archaeal community in rice

agroecosystem. Sci. Total Environ. 596-597, 136–146. doi: 10.1016/j.

scitotenv.2017.04.011

Chijiiwa, R., Hosokawa, M., Kogawa, M., Nishikawa, Y., Ide, K., Sakanashi, C.,

et al. (2020). Single-cell genomics of uncultured bacteria reveals dietary fiber

responders in the mouse gut microbiota. Microbiome 8:5. doi: 10.1186/

s40168-019-0779-2

Aramaki, T., Blanc-Mathieu, R., Endo, H., Ohkubo, K., Kanehisa, M., Goto, S.,

et al. (2020). Kofam KOALA: KEGG Ortholog assignment based on profile HMM

and adaptive score threshold. Bioinformatics 36, 2251–2252. doi: 10.1093/

bioinformatics/btz859

Ding, L.-J., Cui, H.-L., Nie, S.-A., Long, X.-E., Duan, G.-L., and Zhu, Y.-G. (2019).

Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol. Ecol. 95:40.

doi: 10.1093/femsec/fiz040

Arikawa, K., Ide, K., Kogawa, M., Saeki, T., Yoda, T., Endoh, T., et al. (2021).

Recovery of strain-resolved genomes from human microbiome through an

integration framework of single-cell genomics and metagenomics. Microbiome

9:202. doi: 10.1186/s40168-021-01152-4

Dong, H., Fan, S., Sun, H., Chen, C., Wang, A., Jiang, L., et al. (2021). Rhizosphereassociated microbiomes of Rice (Oryza sativa L.) under the effect of increased

nitrogen fertilization. Front. Microbiol. 12:730506. doi: 10.3389/fmicb.2021.730506

Asakawa, S. (2021). Ecology of methanogenic and methane-oxidizing

microorganisms in paddy soil ecosystem. Soil Sci. Plant Nutr. 67, 520–526. doi:

10.1080/00380768.2021.1953355

Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K.,

Bhatnagar, S., et al. (2015). Structure, variation, and assembly of the root-associated

microbiomes of rice. Proc. Natl. Acad. Sci. U. S. A. 112, E911–E920. doi: 10.1073/

pnas.1414592112

Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E.,

et al. (2018). Plant growth-promoting Rhizobacteria: context, mechanisms of action,

and roadmap to commercialization of biostimulants for sustainable agriculture.

Front. Plant Sci. 9:1473. doi: 10.3389/fpls.2018.01473

Edwards, J. A., Santos-Medellín, C. M., Liechty, Z. S., Nguyen, B., Lurie, E.,

Eason, S., et al. (2018). Compositional shifts in root-associated bacterial and

archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol.

16:e2003862. doi: 10.1371/journal.pbio.2003862

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M.,

Kulikov, A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi: 10.1089/

cmb.2012.0021

Elert, E. (2014). Rice by the numbers: a good grain. Nature 514, S50–S51. doi:

10.1038/514S50a

Emms, D. M., and Kelly, S. (2019). Ortho finder: phylogenetic orthology inference

for comparative genomics. Genome Biol. 20:238. doi: 10.1186/s13059-019-1832-y

Battu, L., and Ulaganathan, K. (2020). Whole genome sequencing and

identification of host-interactive genes in the rice endophytic Leifsonia sp. ku-ls.

Funct. Integr. Genomics 20, 237–243. doi: 10.1007/s10142-019-00713-z

Erkel, C., Kube, M., Reinhardt, R., and Liesack, W. (2006). Genome of Rice cluster

I archaea--the key methane producers in the rice rhizosphere. Science 313, 370–372.

doi: 10.1126/science.1127062

Berendsen, R. L., Pieterse, C. M. J., and Bakker, P. A. H. M. (2012). The rhizosphere

microbiome and plant health. Trends Plant Sci. 17, 478–486. doi: 10.1016/j.

tplants.2012.04.001

Estaki, M., Jiang, L., Bokulich, N. A., McDonald, D., González, A., Kosciolek, T.,

et al. (2020). QIIME 2 enables comprehensive end-to-end analysis of diverse

microbiome data and comparative studies with publicly available data. Curr. Protoc.

Bioinformatics 70:e100. doi: 10.1002/cpbi.100

Bhattacharyya, P., Roy, K. S., Das, M., Ray, S., Balachandar, D., Karthikeyan, S.,

et al. (2016). Elucidation of rice rhizosphere metagenome in relation to methane and

nitrogen metabolism under elevated carbon dioxide and temperature using whole

genome metagenomic approach. Sci. Total Environ. 542, 886–898. doi: 10.1016/j.

scitotenv.2015.10.154

Franche, C., Lindström, K., and Elmerich, C. (2009). Nitrogen-fixing bacteria

associated with leguminous and non-leguminous plants. Plant Soil 321, 35–59. doi:

10.1007/s11104-008-9833-8

Bowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D.,

Reddy, T. B. K., et al. (2017). Minimum information about a single amplified genome

(MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea.

Nat. Biotechnol. 35, 725–731. doi: 10.1038/nbt.3893

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality

assessment tool for genome assemblies. Bioinformatics 29, 1072–1075. doi: 10.1093/

bioinformatics/btt086

Breidenbach, B., Pump, J., and Dumont, M. G. (2015). Microbial community

structure in the Rhizosphere of Rice plants. Front. Microbiol. 6:1537. doi: 10.3389/

fmicb.2015.01537

Herlemann, D. P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., and

Andersson, A. F. (2011). Transitions in bacterial communities along the 2000 km

salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579. doi: 10.1038/ismej.2011.41

Bushnell, B., Rood, J., and Singer, E. (2017). BBMerge–accurate paired shotgun

read merging via overlap. PLoS One 12:e0185056. doi: 10.1371/journal.pone.0185056

Herridge, D. F., Peoples, M. B., and Boddey, R. M. (2008). Global inputs of

biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18. doi:

10.1007/s11104-008-9668-3

Chaudhry, V., Sharma, S., Bansal, K., and Patil, P. B. (2016). Glimpse into the

genomes of Rice Endophytic bacteria: diversity and distribution of Firmicutes.

Front. Microbiol. 7:2115. doi: 10.3389/fmicb.2016.02115

Hosokawa, M., Endoh, T., Kamata, K., Arikawa, K., Nishikawa, Y., Kogawa, M.,

et al. (2022). Strain-level profiling of viable microbial community by selective singlecell genome sequencing. Sci. Rep. 12:4443. doi: 10.1038/s41598-022-08401-y

Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P., and Parks, D. H. (2019). GTDB-Tk:

a toolkit to classify genomes with the genome taxonomy database. Bioinformatics

36, 1925–1927. doi: 10.1093/bioinformatics/btz848

Hwangbo, K., Um, Y., Kim, K. Y., Madhaiyan, M., Sa, T. M., and Lee, Y. (2016).

Complete genome sequence of Bacillus velezensis CBMB205, a phosphatesolubilizing bacterium isolated from the Rhizoplane of Rice in the Republic of

Korea. Genome Announc. 4:e00654–16. doi: 10.1128/genomeA.00654-16

Chen, R., Zhong, L., Jing, Z., Guo, Z., Li, Z., Lin, X., et al. (2017). Fertilization

decreases compositional variation of paddy bacterial community across

geographical gradient. Soil Biol. Biochem. 114, 181–188. doi: 10.1016/j.

soilbio.2017.07.013

Ide, K., Nishikawa, Y., Maruyama, T., Tsukada, Y., Kogawa, M., Takeda, H., et al.

(2022). Targeted single-cell genomics reveals novel host adaptation strategies of the

symbiotic bacteria Endozoicomonas in Acropora tenuis coral. BioRXiv,

2022.04.22.489146. doi: 10.1101/2022.04.22.489146

Chi, F., Shen, S.-H., Cheng, H.-P., Jing, Y.-X., Yanni, Y. G., and Dazzo, F. B. (2005).

Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants

Frontiers in Microbiology

09

frontiersin.org

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Aoki et al.

10.3389/fmicb.2022.1024640

drought tolerance in rice genotypes. Planta 243, 1251–1264. doi: 10.1007/

s00425-016-2482-x

Ikeda, S., Sasaki, K., Okubo, T., Yamashita, A., Terasawa, K., Bao, Z., et al. (2014).

Low nitrogen fertilization adapts rice root microbiome to low nutrient environment

by changing biogeochemical functions. Microbes Environ. 29, 50–59. doi: 10.1264/

jsme2.ME13110

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015).

Check M: assessing the quality of microbial genomes recovered from isolates, single cells,

and metagenomes. Genome Res. 25, 1043–1055. doi: 10.1101/gr.186072.114

Imchen, M., Kumavath, R., Vaz, A. B. M., Góes-Neto, A., Barh, D., Ghosh, P., et al.

(2019). 16S rRNA gene amplicon based metagenomic signatures of Rhizobiome

Community in Rice Field during Various Growth Stages. Front. Microbiol. 10:2103.

doi: 10.3389/fmicb.2019.02103

Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C.

M., and Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial

microbes. Annu. Rev. Phytopathol. 52, 347–375. doi: 10.1146/annurevphyto-082712-102340

Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., and Aluru, S.

(2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear

species boundaries. Nat. Commun. 9:5114. doi: 10.1038/s41467-018-07641-9

Qin, Y., Druzhinina, I. S., Pan, X., and Yuan, Z. (2016). Microbially mediated plant

salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol.

Adv. 34, 1245–1259. doi: 10.1016/j.biotechadv.2016.08.005

Jiang, Y., Liang, Y., Li, C., Wang, F., Sui, Y., Suvannang, N., et al. (2016). Crop

rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol.

Biochem. 95, 250–261. doi: 10.1016/j.soilbio.2016.01.007

Rinke, C., Lee, J., Nath, N., Goudeau, D., Thompson, B., Poulton, N., et al. (2014).

Obtaining genomes from uncultivated environmental microorganisms using

FACS–based single-cell genomics. Nat. Protoc. 9, 1038–1048. doi: 10.1038/

nprot.2014.067

Jogawat, A., Vadassery, J., Verma, N., Oelmüller, R., Dua, M., Nevo, E., et al.

(2016). PiHOG1, a stress regulator MAP kinase from the root endophyte fungus

Piriformospora indica, confers salinity stress tolerance in rice plants. Sci. Rep.

6:36765. doi: 10.1038/srep36765

Ruíz-Sánchez, M., Armada, E., Muñoz, Y., García de Salamone, I. E., Aroca, R.,

Ruíz-Lozano, J. M., et al. (2011). Azospirillum and arbuscular mycorrhizal

colonization enhance rice growth and physiological traits under well-watered and

drought conditions. J. Plant Physiol. 168, 1031–1037. doi: 10.1016/j.

jplph.2010.12.019

Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., et al. (2014).

Inter pro scan 5: genome-scale protein function classification. Bioinformatics 30,

1236–1240. doi: 10.1093/bioinformatics/btu031

Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., and Sundaresan, V.

(2017). Drought stress results in a compartment-specific restructuring of the Rice

root-associated microbiomes. mBio 8:e00764–17. doi: 10.1128/mBio.00764-17

Kim, H., and Lee, Y.-H. (2020). The Rice microbiome: a model platform for crop

Holobiome. Phytobiomes J. 4, 5–18. doi: 10.1094/PBIOMES-07-19-0035-RVW

Krause, A., Ramakumar, A., Bartels, D., Battistoni, F., Bekel, T., Boch, J., et al.

(2006). Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus

sp. strain BH72. Nat. Biotechnol. 24, 1385–1391. doi: 10.1038/nbt1243

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics

30, 2068–2069. doi: 10.1093/bioinformatics/btu153

Kumar, A., and Dubey, A. (2020). Rhizosphere microbiome: engineering bacterial

competitiveness for enhancing crop production. J. Advert. Res. 24, 337–352. doi:

10.1016/j.jare.2020.04.014

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al.

(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60.

doi: 10.1186/gb-2011-12-6-r60

Lavakush, J. Y., Verma, J. P., Jaiswal, D. K., and Kumar, A. (2014). Evaluation of

PGPR and different concentration of phosphorus level on plant growth, yield and

nutrient content of rice (Oryza sativa). Ecol. Eng. 62, 123–128. doi: 10.1016/j.

ecoleng.2013.10.013

Sengupta, S., Ganguli, S., and Singh, P. K. (2017). Metagenome analysis of the root

endophytic microbial community of Indian rice (O. sativa L.). Genom Data 12,

41–43. doi: 10.1016/j.gdata.2017.02.010

Shakeel, M., Rais, A., Hassan, M. N., and Hafeez, F. Y. (2015). Root associated

Bacillus sp. improves growth, yield and zinc translocation for basmati Rice (Oryza

sativa) varieties. Front. Microbiol. 6:1286. doi: 10.3389/fmicb.2015.01286

Lee, H. J., Kim, S. Y., Kim, P. J., Madsen, E. L., and Jeon, C. O. (2014). Methane

emission and dynamics of methanotrophic and methanogenic communities in a

flooded rice field ecosystem. FEMS Microbiol. Ecol. 88, 195–212. doi:

10.1111/1574-6941.12282

Sharma, A., Shankhdhar, D., and Shankhdhar, S. C. (2013). Enhancing grain iron

content of rice by the application of plant growth promoting rhizobacteria. Plant

Soil Environ. 59, 89–94. doi: 10.17221/683/2012-PSE

Letunic, I., and Bork, P. (2021). Interactive tree of life (iTOL) v5: an online tool

for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296.

doi: 10.1093/nar/gkab301

Shenton, M., Iwamoto, C., Kurata, N., and Ikeo, K. (2016). Effect of wild and

cultivated Rice genotypes on Rhizosphere bacterial community composition. Rice

9:42. doi: 10.1186/s12284-016-0111-8

Li, D., Ni, H., Jiao, S., Lu, Y., Zhou, J., Sun, B., et al. (2021). Coexistence patterns

of soil methanogens are closely tied to methane generation and community

assembly in rice paddies. Microbiome 9:20. doi: 10.1186/s40168-020-00978-8

Shukla, N., Awasthi, R. P., Rawat, L., and Kumar, J. (2012). Biochemical and

physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma

harzianum under drought stress. Plant Physiol. Biochem. 54, 78–88. doi: 10.1016/j.

plaphy.2012.02.001

Lin, H., Hu, S., Liu, R., Chen, P., Ge, C., Zhu, B., et al. (2016). Genome sequence

of Pseudomonas koreensis CRS05-R5, an antagonistic bacterium Isolated from Rice

Paddy field. Front. Microbiol. 7:1756. doi: 10.3389/fmicb.2016.01756

Simmons, T., Caddell, D. F., Deng, S., and Coleman-Derr, D. (2018). Exploring

the root microbiome: extracting bacterial community data from the soil,

Rhizosphere, and root Endosphere. J. Vis. Exp. 135:e57561. doi: 10.3791/57561

Lugtenberg, B., and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria.

Annu. Rev. Microbiol. 63, 541–556. doi: 10.1146/annurev.micro.62.081307.162918

Stepanauskas, R., Fergusson, E. A., Brown, J., Poulton, N. J., Tupper, B.,

Labonté, J. M., et al. (2017). Improved genome recovery and integrated cell-size

analyses of individual uncultured microbial cells and viral particles. Nat. Commun.

8:84. doi: 10.1038/s41467-017-00128-z

Mallawaarachchi, V. G., Wickramarachchi, A. S., and Lin, Y. (2021). Improving

metagenomic binning results with overlapped bins using assembly graphs.

Algorithms Mol. Biol. 16:3. doi: 10.1186/s13015-021-00185-6

Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., et al.

(2017). Abiotic stress responses and microbe-mediated mitigation in plants: the

Omics strategies. Front. Plant Sci. 8:172. doi: 10.3389/fpls.2017.00172

Syed Ab Rahman, S. F., Singh, E., Pieterse, C. M. J., and Schenk, P. M. (2018).

Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267,

102–111. doi: 10.1016/j.plantsci.2017.11.012

Mhlongo, M. I., Piater, L. A., Madala, N. E., Labuschagne, N., and Dubery, I. A.

(2018). The chemistry of plant-microbe interactions in the Rhizosphere and the

potential for metabolomics to reveal signaling related to defense priming and

induced systemic resistance. Front. Plant Sci. 9:112. doi: 10.3389/fpls.2018.00112

Tiwari, S., and Lata, C. (2018). Heavy metal stress, signaling, and tolerance due to

plant-associated microbes: an overview. Front. Plant Sci. 9:452. doi: 10.3389/

fpls.2018.00452

Tiwari, S., Prasad, V., Chauhan, P. S., and Lata, C. (2017). Bacillus amyloliquefaciens

confers tolerance to various abiotic stresses and modulates plant response to

Phytohormones through Osmoprotection and gene expression regulation in Rice.

Front. Plant Sci. 8:1510. doi: 10.3389/fpls.2017.01510

Midha, S., Bansal, K., Sharma, S., Kumar, N., Patil, P. P., Chaudhry, V., et al. (2015).

Genomic resource of Rice seed associated bacteria. Front. Microbiol. 6:1551. doi:

10.3389/fmicb.2015.01551

Mishra, J., Singh, R., and Arora, N. K. (2017). Alleviation of heavy metal stress in

plants and remediation of soil by Rhizosphere microorganisms. Front. Microbiol.

8:1706. doi: 10.3389/fmicb.2017.01706

van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P.,

Streitwolf-Engel, R., Boller, T., et al. (1998). Mycorrhizal fungal diversity determines

plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72. doi:

10.1038/23932

Nishikawa, Y., Kogawa, M., Hosokawa, M., Wagatsuma, R., Mineta, K.,

Takahashi, K., et al. (2022). Validation of the application of gel beads-based singlecell genome sequencing platform to soil and seawater. ISME Commun. 2, 1–11. doi:

10.1038/s43705-022-00179-4

Wang, J., Song, Y., Ma, T., Raza, W., Li, J., Howland, J. G., et al. (2017). Impacts

of inorganic and organic fertilization treatments on bacterial and fungal

communities in a paddy soil. Appl. Soil Ecol. 112, 42–50. doi: 10.1016/j.

apsoil.2017.01.005

Okubo, T., Ikeda, S., Sasaki, K., Ohshima, K., Hattori, M., Sato, T., et al. (2014).

Phylogeny and functions of bacterial communities associated with field-grown rice

shoots. Microbes Environ. 29, 329–332. doi: 10.1264/jsme2.ME14077

Wang, H., Zeng, Y., Guo, C., Bao, Y., Lu, G., Reinfelder, J. R., et al. (2018).

Bacterial, archaeal, and fungal community responses to acid mine drainage-laden

pollution in a rice paddy soil ecosystem. Sci. Total Environ. 616-617, 107–116. doi:

10.1016/j.scitotenv.2017.10.224

Pandey, V., Ansari, M. W., Tula, S., Yadav, S., Sahoo, R. K., Shukla, N., et al.

(2016). Dose-dependent response of Trichoderma harzianum in improving

Frontiers in Microbiology

10

frontiersin.org

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Aoki et al.

10.3389/fmicb.2022.1024640

Xu, L., Dong, Z., Chiniquy, D., Pierroz, G., Deng, S., Gao, C., et al. (2021). Genomeresolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere

microbiome dynamics. Nat. Commun. 12:3209. doi: 10.1038/s41467-021-23553-7

Yuan, Z., Druzhinina, I. S., Labbé, J., Redman, R., Qin, Y., Rodriguez, R.,

et al. (2016). Specialized microbiome of a halophyte and its role in

helping non-host plants to withstand salinity. Sci. Rep. 6:32467. doi: 10.1038/

srep32467

Xu, Y., Ge, Y., Song, J., and Rensing, C. (2020). Assembly of root-associated

microbial community of typical rice cultivars in different soil types. Biol. Fertil. Soils

56, 249–260. doi: 10.1007/s00374-019-01406-2

Zhang, J., Liu, Y.-X., Zhang, N., Hu, B., Jin, T., Xu, H., et al. (2019). NRT1.1B is

associated with root microbiota composition and nitrogen use in field-grown rice.

Nat. Biotechnol. 37, 676–684. doi: 10.1038/s41587-019-0104-4

Yanni, Y. G., Rizk, R. Y., Corich, V., Squartini, A., Ninke, K.,

Philip-Hollingsworth, S., et al. (1997). Natural endophytic association between

Rhizobium leguminosarum bv. Trifolii and rice roots and assessment of its potential

to promote rice growth. Plant Soil 194, 99–114. doi: 10.1023/A:1004269902246

Zheng, Y., Huang, R., Wang, B. Z., Bodelier, P. L. E., and Jia, Z. J. (2014).

Competitive interactions between methane-and ammonia-oxidizing bacteria

modulate carbon and nitrogen cycling in paddy soil. Biogeosciences 11, 3353–3368.

doi: 10.5194/bg-11-3353-2014

Yoda, T., Arikawa, K., Saeki, T., Matsuhashi, A., and Hosokawa, M. (2020). High-quality

draft single-cell genome sequences of two Gammaproteobacteria strains sampled from

soil in a strawberry farm. Microbiol. Resour. Announc. 9:e00743–20. doi: 10.1128/

MRA.00743-20

Frontiers in Microbiology

Zhong, Y., Hu, J., Xia, Q., Zhang, S., Li, X., Pan, X., et al. (2020). Soil microbial

mechanisms promoting ultrahigh rice yield. Soil Biol. Biochem. 143:107741. doi:

10.1016/j.soilbio.2020.107741

11

frontiersin.org

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る