リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MarpolBase Expression: A Web-Based, Comprehensive Platform for Visualization and Analysis of Transcriptomes in the Liverwort Marchantia polymorpha」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MarpolBase Expression: A Web-Based, Comprehensive Platform for Visualization and Analysis of Transcriptomes in the Liverwort Marchantia polymorpha

Kawamura, Shogo Romani, Facundo Yagura, Masaru Mochizuki, Takako Sakamoto, Mika Yamaoka, Shohei Nishihama, Ryuichi Nakamura, Yasukazu Yamato, Katsuyuki T Bowman, John L Kohchi, Takayuki Tanizawa, Yasuhiro 京都大学 DOI:10.1093/pcp/pcac129

2022.11

概要

The liverwort Marchantia polymorpha is equipped with a wide range of molecular and genetic tools and resources that have led to its wide use to explore the evo-devo aspects of land plants. Although its diverse transcriptome data are rapidly accumulating, there is no extensive yet user-friendly tool to exploit such a compilation of data and to summarize results with the latest annotations. Here, we have developed a web-based suite of tools, MarpolBase Expression (MBEX, https://marchantia.info/mbex/), where users can visualize gene expression profiles, identify differentially expressed genes, perform co-expression and functional enrichment analyses and summarize their comprehensive output in various portable formats. Using oil body biogenesis as an example, we demonstrated that the results generated by MBEX were consistent with the published experimental evidence and also revealed a novel transcriptional network in this process. MBEX should facilitate the exploration and discovery of the genetic and functional networks behind various biological processes in M. polymorpha and promote our understanding of the evolution of land plants.

参考文献

Adam, K.-P., Thiel, R., Zapp, J. and Becker, H. (1998) Involvement of the mevalonic acid pathway and the glyceraldehyde–pyruvate path- way in terpenoid biosynthesis of the liverworts Ricciocarpos natans and Conocephalum conicum. Arch. Biochem. Biophys. 354: 181–187.

Asakawa, Y. and Ludwiczuk, A. (2018) Chemical constituents of bryophytes: structures and biological activity. J. Nat. Prod. 81: 641–660.

Bowman, J.L. (2022) Chapter one—The liverwort Marchantia polymorpha, a model for all ages. In Current Topics in Developmental Biology. Edited by Goldstein, B. and Srivastava, M. pp. 1–32. Academic Press, London.

Bowman, J.L., Araki, T., Arteaga-Vazquez, M.A., Berger, F., Dolan, L., Haseloff, J., et al. (2016) The naming of names: guidelines for gene nomenclature in Marchantia. Plant Cell Physiol. 57: 257–261.

Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., et al. (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171: 287–304.e15.

Emms, D.M. and Kelly, S. (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20: 238.

Ferrari, C., Shivhare, D., Hansen, B.O., Pasha, A., Esteban, E., Provart, N.J., et al. (2020) Expression atlas of Selaginella moellendorffii provides insights into the evolution of vasculature, secondary metabolism, and roots. Plant Cell 32: 853–870.

Flores-Sandoval, E., Romani, F. and Bowman, J.L. (2018) Co-expression and transcriptome analysis of Marchantia polymorpha transcription fac- tors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front. Plant Sci. 9: 1345.

Friederich, S., Maier, U.H., Deus-Neumann, B., Asakawa, Y. and Zenk, M.H. (1999) Biosynthesis of cyclic bis(bibenzyls) in Marchantia polymorpha. Phytochemistry 50: 589–598.

Gülck, T. and Møller, B.L. (2020) Phytocannabinoids: origins and biosynthe- sis. Trends Plant Sci. 25: 985–1004.

Hisanaga, T., Fujimoto, S., Cui, Y., Sato, K., Sano, R., Yamaoka, S., et al. (2021) Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. Elife 10: e57090.

Iwasaki, M., Kajiwara, T., Yasui, Y., Yoshitake, Y., Miyazaki, M., Kawamura, S., et al. (2021) Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Curr. Biol. 31: 5522–5532.e7.

Julca, I., Ferrari, C., Flores-Tornero, M., Proost, S., Lindner, A.-C., Hack- enberg, D., et al. (2021) Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants. Nat. Plants 7: 1143–1159.

Kanazawa, T., Era, A., Minamino, N., Shikano, Y., Fujimoto, M., Uemura, T., et al. (2016) SNARE molecules in Marchantia polymorpha: unique and conserved features of the membrane fusion machinery. Plant Cell Physiol. 57: 307–324.

Kanazawa, T., Morinaka, H., Ebine, K., Shimada, T.L., Ishida, S., Minamino, N., et al. (2020) The liverwort oil body is formed by redirec- tion of the secretory pathway. Nat. Commun. 11: 6152.

Katz, K., Shutov, O., Lapoint, R., Kimelman, M., Brister, J.R. and O’Sullivan, C. (2022) The sequence read archive: a decade more of explosive growth. Nucleic Acids Res. 50: D387–D390.

Klopfenstein, D.V., Zhang, L., Pedersen, B.S., Ramírez, F., Warwick Vesztrocy, A., Naldi, A., et al. (2018) GOATOOLS: a python library for gene ontology analyses. Sci. Rep. 8: 10872.

Kohchi, T., Yamato, K.T., Ishizaki, K., Yamaoka, S. and Nishihama, R. (2021) Development and molecular genetics of Marchantia polymorpha. Annu. Rev. Plant Biol. 72: 677–702.

Koi, S., Hisanaga, T., Sato, K., Shimamura, M., Yamato, K.T., Ishizaki, K., et al. (2016) An evolutionarily conserved plant RKD factor controls germ cell differentiation. Curr. Biol. 26: 1775–1781.

Kubo, H., Nozawa, S., Hiwatashi, T., Kondou, Y., Nakabayashi, R., Mori, T., et al. (2018) Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha. J. Plant Res. 131: 849–864.

Kumar, S., Kempinski, C., Zhuang, X., Norris, A., Mafu, S., Zi, J., et al. (2016) Molecular diversity of terpene synthases in the liverwort Marchantia polymorpha. Plant Cell 28: 2632–2650.

Liesecke, F., Daudu, D., Dugé de Bernonville, R., Besseau, S., Clastre, M., Courdavault, V., et al. (2018) Ranking genome-wide correlation mea- surements improves microarray and RNA-seq based global and targeted co-expression networks. Sci. Rep. 8: 10885.

Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeaq2. Genome Biol. 15: 550.

Mi, H., Ebert, D., Muruganujan, A., Mills, C., Albou, L.-P., Mushayamaha, T., et al. (2021) PANTHER version 16: a revised family classification, tree- based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49: D394–D403.

Montgomery, S.A., Tanizawa, Y., Galik, B., Wang, N., Ito, T., Mochizuki, T., et al. (2020) Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitu- tive heterochromatin. Curr. Biol. 30: 573–588.e7.

Obayashi, T., Hibara, H., Kagaya, Y., Aoki, Y. and Kinoshita, K. (2022) ATTED- II v11: a plant gene coexpression database using a sample balancing technique by subagging of principal components. Plant Cell Physiol. 63: 869–881.

Obayashi, T., Kagaya, Y., Aoki, Y., Tadaka, S. and Kinoshita, K. (2019) COXPRESdb v7: a gene coexpression database for 11 animal species supported by 23 coexpression platforms for technical evaluation and evolutionary inference. Nucleic Acids Res. 47: D55–D62.

Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. and Kingsford, C. (2017) Salmon provides fast and bias-aware quantification of transcript expres- sion. Nat. Methods 14: 417–419.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2012). arXiv Scikit-learn: machine learning in python [cs.LG].

Perroud, P.-F., Haas, F.B., Hiss, M., Ullrich, K.K., Alboresi, A., Amirebrahimi, M., et al. (2018) The Physcomitrella patens gene atlas project: large-scale RNA-seq based expression data. Plant J. 95: 168–182.

Romani, F., Banic, E., Florent, S.N., Kanazawa, T., Goodger, J.Q.D., Mentink, R.A., et al. (2020) Oil body formation in Marchantia polymorpha is controlled by MpC1HDZ and serves as a defense against arthropod herbivores. Curr. Biol. 30: 2815–2828.e8.

Romani, F., Flores, J.R., Tolopka, J.I., Suarez, G., He, X. and Moreno, J.E. (2022) Liverwort oil bodies: diversity, biochemistry, and molecular cell biology of the earliest secretory structure of land plants. J. Exp. Bot. 73: 4427–4439.

Rovekamp, M., Bowman, J.L. and Grossniklaus, U. (2016) Marchantia MpRKD regulates the gametophyte-sporophyte transition by keep- ing egg cells quiescent in the absence of fertilization. Curr. Biol. 26: 1782–1789.

Shimamura, M. (2016) Marchantia polymorpha: taxonomy, phylogeny and morphology of a model system. Plant Cell Physiol. 57: 230–256.

Suire, C., Bouvier, F., Backhaus, R.A., Bégu, D., Bonneu, M. and Camara, B. (2000) Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiol. 124: 971–978.

Takizawa, R., Hatada, M., Moriwaki, Y., Abe, S., Yamashita, Y., Arimitsu, R., et al. (2021) Fungal-type terpene synthases in Marchantia polymorpha are involved in sesquiterpene biosynthesis in oil body cells. Plant Cell Physiol. 62: 528–537.

Tan, Q.W., Lim, P.K., Chen, Z., Pasha, A., Provart, N. and Mutwil, M. (2021) Marchantia polymorpha gene expression atlas reveals the hierarchy of abiotic stress responses and conservation of diurnal gene expression. bioRxiv.

Tanaka, M., Esaki, T., Kenmoku, H., Koeduka, T., Kiyoyama, Y., Masujima, T., et al. (2016) Direct evidence of specific localization of sesquiterpenes and marchantin A in oil body cells of Marchantia polymorpha L. Phyto- chemistry 130: 77–84.

Turco, G.M., Kajala, K., Kunde-Ramamoorthy, G., Ngan, C.-Y., Olson, A., Deshphande, S., et al. (2017) DNA methylation and gene expression reg- ulation associated with vascularization in Sorghum bicolor. New Phytol. 214: 1213–1229.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., et al. (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 17: 261–272.

Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V. and Provart, N.J. (2007) An ‘Electronic Fluorescent Pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS One 2: e718.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る