リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases.

Ryota Sasaki Shuhei Miyashita Sugihiro Ando Kumiko Ito Toshiyuki Fukuhara Hideki Takahashi 東北大学 DOI:10.3390/v13040591

2021.03.31

概要

Jumbo phages have DNA genomes larger than 200 kbp in large virions composed of an icosahedral head, tail, and other adsorption structures, and they are known to be abundant biological substances in nature. In this study, phages in leaf litter compost were screened for their potential to suppress rice seedling rot disease caused by the bacterium Burkholderia glumae, and a novel phage was identified in a filtrate-enriched suspension of leaf litter compost. The phage particles consisted of a rigid tailed icosahedral head and contained a DNA genome of 227,105 bp. The phage could lyse five strains of B. glumae and six strains of Burkholderia plantarii. The phage was named jumbo Burkholderia phage FLC6. Proteomic tree analysis revealed that phage FLC6 belongs to the same clade as two jumbo Ralstonia phages, namely RSF1 and RSL2, which are members of the genus Chiangmaivirus (family: Myoviridae; order: Caudovirales). Interestingly, FLC6 could also lyse two strains of Ralstonia pseudosolanacearum, the causal agent of bacterial wilt, suggesting that FLC6 has a broad host range that may make it especially advantageous as a bio-control agent for several bacterial diseases in economically important crops. The novel jumbo phage FLC6 may enable leaf litter compost to suppress several bacterial diseases and may itself be useful for controlling plant diseases in crop cultivation.

参考文献

1. Orlova, E.V. Bacteriophages and their structural organisation. In Bacteriophages; Kurtböke, I., Ed.; InTech: Rijeka, Croatia, 2012;pp. 3–30. ISBN 978-953-51-0272-4.

2. Ackermann, H.-W. 5500 Phages examined in the electron microscope. Arch. Virol. 2006, 152, 227–243. [CrossRef] [PubMed]

3. Dion, M.B.; Oechslin, F.; Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Genet. 2020, 18, 125–138. [CrossRef] [PubMed]

4. Lehman, S.M. Bacteriophage Diversity. In Viruses of Microorganisms; Caister Academic Press: Poole, UK, 2018; pp. 145–166.

5. Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Dempsey, D.M.; Dutilh, B.E.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C.; et al. Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Arch. Virol. 2020, 165, 2737–2748. [CrossRef] [PubMed]

6. Yuan, Y.; Gao, M. Jumbo bacteriophages: An overview. Front. Microbiol. 2017, 8. [CrossRef]

7. Attai, H.; Boon, M.; Phillips, K.; Noben, J.-P.; Lavigne, R.; Brown, P.J.B. Larger Than Life: Isolation and Genomic Characterization of a Jumbo Phage That Infects the Bacterial Plant Pathogen, Agrobacterium tumefaciens. Front. Microbiol. 2018, 9, 1861. [CrossRef]

8. Bhunchoth, A.; Blanc-Mathieu, R.; Mihara, T.; Nishimura, Y.; Askora, A.; Phironrit, N.; Leksomboon, C.; Chatchawankanphanich, O.; Kawasaki, T.; Nakano, M.; et al. Two asian jumbo phages, φRSL2 and φRSF1, infect Ralstonia solanacearum and show common features of φKZ-related phages. Virology 2016, 494, 56–66. [CrossRef]

9. Day, A.; Ahn, J.; Salmond, G.P.C. Jumbo Bacteriophages Are Represented Within an Increasing Diversity of Environmental Viruses Infecting the Emerging Phytopathogen, Dickeya solani. Front. Microbiol. 2018, 9, 2169. [CrossRef]

10. Dömötör, D.; Becságh, P.; Rákhely, G.; Schneider, G.; Kovács, T. Complete Genomic Sequence of Erwinia amylovora Phage PhiEaH2. J. Virol. 2012, 86, 10899. [CrossRef]

11. Frampton, R.A.; Taylor, C.; Moreno, A.V.H.; Visnovsky, S.B.; Petty, N.K.; Pitman, A.R.; Fineran, P.C. Identification of Bacterio- phages for Biocontrol of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Appl. Environ. Microbiol. 2014, 80, 2216–2228. [CrossRef]

12. Malone, L.M.; Warring, S.L.; Jackson, S.A.; Warnecke, C.; Gardner, P.P.; Gumy, L.F.; Fineran, P.C. A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat. Microbiol. 2019, 5, 48–55. [CrossRef]

13. Sharma, R.; Pielstick, B.A.; Bell, K.A.; Nieman, T.B.; Stubbs, O.A.; Yeates, E.L.; Baltrus, D.A.; Grose, J.H. A Novel, Highly Related Jumbo Family of Bacteriophages That Were Isolated Against Erwinia. Front. Microbiol. 2019, 10, 1533. [CrossRef]

14. Yagubi, A.I.; Castle, A.J.; Kropinski, A.M.; Banks, T.W.; Svircev, A.M. Complete Genome Sequence of Erwinia amylovora Bacteriophage vB_EamM_Ea35-70. Genome Announc. 2014, 2, e00413-14. [CrossRef]

15. Yamada, T.; Satoh, S.; Ishikawa, H.; Fujiwara, A.; Kawasaki, T.; Fujie, M.; Ogata, H. A jumbo phage infecting the phytopathogen Ralstonia solanacearum defines a new lineage of the Myoviridae family. Virology 2010, 398, 135–147. [CrossRef]

16. Yoshikawa, G.; Askora, A.; Blanc-Mathieu, R.; Kawasaki, T.; Li, Y.; Nakano, M.; Ogata, H.; Yamada, T. Xanthomonas citri jumbo phage XacN1 exhibits a wide host range and high complement of tRNA genes. Sci. Rep. 2018, 8, 1–10. [CrossRef]

17. Yuan, Y.; Gao, M. Characteristics and complete genome analysis of a novel jumbo phage infecting pathogenic Bacillus pumilus causing ginger rhizome rot disease. Arch. Virol. 2016, 161, 3597–3600. [CrossRef]

18. Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [CrossRef]

19. Matsui, T.; Yoshikawa, G.; Mihara, T.; Chatchawankanphanich, O.; Kawasaki, T.; Nakano, M.; Fujie, M.; Ogata, H.; Yamada, T. Replications of Two Closely Related Groups of Jumbo Phages Show Different Level of Dependence on Host-encoded RNA Polymerase. Front. Microbiol. 2017, 8, 1010. [CrossRef]

20. Meczker, K.; Dömötör, D.; Vass, J.; Rákhely, G.; Schneider, G.; Kovács, T. The genome of the Erwinia amylovora phage PhiEaH1 reveals greater diversity and broadens the applicability of phages for the treatment of fire blight. FEMS Microbiol. Lett. 2014, 350, 25–27. [CrossRef]

21. Kannan, V.R.; Bastas, K.K.; Devi, R.S. Scientific and economic impact of plant pathogenic bacteria. In Sustainable Approaches to Controlling Plant Pathogenic Bacteria; Kannan, V.R., Bastas, K.K., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 369–392. ISBN 9780429158896.

22. Azegami, K.; Nishiyama, K.; Watanabe, Y.; Kadota, I.; Ohuch, A.; Fukazawa, C. Pseudomonas plantarii sp. nov., the Causal Agent of Rice Seedling Blight. Int. J. Syst. Bacteriol. 1987, 37, 475. [CrossRef]

23. Uematsu, T.; Yoshimura, D.; Nishiyama, K.; Ibaragi, T.; Fujii, H. Pathogenic bacterium causing seedling rot of rice. Ann. Phytopathol. Soc. Jpn. 1976, 42, 464–471. [CrossRef]

24. Adachi, N.; Tsukamoto, S.; Inoue, Y.; Azegami, K. Control of Bacterial Seedling Rot and Seedling Blight of Rice by Bacteriophage.Plant Dis. 2012, 96, 1033–1036. [CrossRef]Viruses 2021, 13, 591 12 of 12

25. Sasaki, R.; Miyashita, S.; Ando, S.; Ito, K.; Fukuhara, T.; Kormelink, R.; Takahashi, H. Complete genomic sequence of a novel phytopathogenic Burkholderia phage isolated from fallen leaf compost. Arch. Virol. 2021, 166, 313–316. [CrossRef]

26. Azegami, K. Burkholderia glumae and Burkholderia plantarii, the pathogens of bacterial grain rot of rice and bacterial seedling blight of rice, respectively. MAFF Microorg. Genet. Resour. Man. 2009, 26, 1–24.

27. Horita, M.; Tsuchiya, K. Causal agent of bacterial wilt disease, Ralstonia solanacearum. MAFF Microorg. Genet. Resour. Man. 2012,12, 1–34.

28. Sambrook, J.; Russel, D.W. Molecular Cloning: A Laboratory Manual (3-Volume Set); Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001; ISBN 978-087969577-4.

29. Nurk, S.; Bankevich, A.; Antipov, D.; Gurevich, A.; Korobeynikov, A.; Lapidus, A.; Prjibelsky, A.; Pyshkin, A.; Sirotkin, A.; Sirotkin, Y.; et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Research in Computational Molecular Biology; RECOMB 2013; Lecture Notes in Computer Science; Deng, M., Jiang, R., Sun, F., Zhang, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 158–170. ISBN 9783642371943.

30. Besemer, J.; Lomsadze, A.; Borodovsky, M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001, 29, 2607–2618. [CrossRef]

31. Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res.2016, 44, W54–W57. [CrossRef] [PubMed]

32. Lagesen, K.; Hallin, P.; Rødland, E.A.; Staerfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [CrossRef] [PubMed]

33. Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [CrossRef]

34. Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; Mcgettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [CrossRef]

35. Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. ViPTree: The viral proteomic tree server. Bioinformatics 2017, 33, 2379–2380. [CrossRef]

36. Ando, S.; Ito, T.; Kanno, T.; Kobayashi, T.; Morikawa, T.; Honda, K.-I.; Tsushima, S.; Takahashi, H. Impact of organic crop management on suppression of bacterial seedling diseases in rice. Org. Agric. 2014, 4, 187–196. [CrossRef]

37. Takahashi, H.; Matsushita, Y.; Ito, T.; Nakai, Y.; Nanzyo, M.; Kobayashi, T.; Iwaishi, S.; Hashimoto, T.; Miyashita, S.; Morikawa, T.; et al. Comparative analysis of microbial diversity and bacterial seedling disease-suppressive activity in organic-farmed and standardized commercial conventional soils for rice nursery cultivation. J. Phytopathol. 2018, 166, 249–264. [CrossRef]

38. Ando, S.; Takahashi, H. Analysis of the disease-suppressing effects of microorganisms included in nursery soils for organic farming of rice. J. Integr. Agric. 2018, 15, 51–54.

39. Hikichi, Y.; Egami, H.; Oguri, Y.; Okuno, T. Fitness for Survival of Burkholderia glumae Resistant to Oxolinic Acid in Rice Plants.Jpn. J. Phytopathol. 1998, 64, 147–152. [CrossRef]

40. Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol.2017, 8, 34. [CrossRef]

41. Wang, X.; Wei, Z.; Yang, K.; Wang, J.; Jousset, A.; Xu, Y.; Shen, Q.; Friman, V.-P. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 2019, 37, 1513–1520. [CrossRef]

42. Álvarez, B.; López, M.M.; Biosca, E.G. Biocontrol of the Major Plant Pathogen Ralstonia solanacearum in Irrigation Water and Host Plants by Novel Waterborne Lytic Bacteriophages. Front. Microbiol. 2019, 10, 2813. [CrossRef]

43. Álvarez, B.; Biosca, E.G. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.Front. Plant Sci. 2017, 8, 1–7. [CrossRef]

44. Fujiwara, A.; Fujisawa, M.; Hamasaki, R.; Kawasaki, T.; Fujie, M.; Yamada, T. Biocontrol of Ralstonia solanacearum by Treatment with Lytic Bacteriophages. Appl. Environ. Microbiol. 2011, 77, 4155–4162. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る