リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Specialized pro-resolving lipid meditators agonistic to formyl peptide receptor type 2 attenuate ischemia-reperfusion injury in rat lung」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Specialized pro-resolving lipid meditators agonistic to formyl peptide receptor type 2 attenuate ischemia-reperfusion injury in rat lung

Oda, Hiromi 京都大学 DOI:10.14989/doctor.k23760

2022.03.23

概要

背景:
終末期呼吸器疾患において肺移植は唯一の治療手段であるが、術後急性期の初期移植肺機能不全の発症は臨床経過に大きく影響し、長期予後をも悪化させる要因として問題となる。初期移植肺機能不全の原因の一つとしては虚血再灌流障害(ischemia-reperfusion injury; IRI)が知られている。肺のIRI は、非特異的な肺胞障害と強固な炎症による肺水腫を特徴とする急性肺障害の一形態である。
近年、様々な炎症性疾患の緩和に ω3 および ω6 系多価不飽和脂肪酸の代謝産物が有効であるとの報告がなされている。これらの代謝産物はリゾルビンやリポキシンに代表され、特異的炎症収束性脂質メディエーター(specialized pro-resolving lipid mediators;SPMs)と呼ばれている。今日まで 肺のIRI における内因性SPMs の動態とその作用については殆ど知られていない。本研究では、肺のIRI の開始から解消に至る期間において内因性SPMs の動的変化を評価し、SPMs の補充が肺のIRI に及ぼす影響を明らかにすることを目的とした。

方法:
ラット左肺門クランプモデルを用い、90分間の虚血に続いて種々の時間で再灌流を行った。次に肺組織の内因性 SPMs の動的変化を液体クロマトグラフィー・タンデム式質量分析により評価した。また、虚血再灌流の前後における SPMs 受容体の遺伝子発現を評価した。また、再灌流時に SPMs の投与、あるいは SPMs 受容体拮抗薬と SPMs の併用投与を行い、再灌流後に呼吸機能、動脈血液ガス分析、肺湿乾重量比、肺組織の炎症性サイトカイン濃度の計測と病理学的評価を行った。

結果:
肺の内因性 SPMs は再灌流1時間後には減少する傾向を示した。再灌流後3日から7日の間に呼吸機能は改善したが、内因性SPMs は正常時に比較して低値のままであった。SPMs 受容体のうち、肺組織ではホルミルペプチド受容体2(formyl peptide receptor type2; ALX/FPR2)遺伝子の発現が再灌流3時間後に増加していた。また肺組織に認められた炎症細胞は免疫組織化学的にALX/FPR2 に陽性であった。ALX/FPR2 のアゴニストであるアスピリン誘発リゾルビン D1(aspirin-triggered resolvin D1; AT-RvD1)およびアスピリン誘発リポキシンA4(aspirin-triggered lipoxin A4; AT-LXA4)を再灌流時に投与すると、再灌流3時間後において呼吸機能の改善、肺水腫の軽減、炎症性サイトカイン濃度の低下、肺胞内出血の軽減と好中球浸潤の減少が認められた。一方で、AT-RvD1 および AT-LXA4のこれらの効果は、ALX/FPR2 拮抗薬の併用下では認められなかった。

結論:
ラット左肺門クランプモデルにおいて肺組織の内因性 SPMs は再灌流後に低下し、肺機能の回復後も低値を維持していた。 SPMs 受容体である ALX/FPR2 は肺 IRI の開始期で上昇していた。AT-RvD1 およびAT-LXA4の投与はALX/FPR2 を介してラット肺のIRI の増悪を緩和していた。これらのSPMs は IRI の新たな予防および治療方法の開発の一助となる可能性があると考えられた。

参考文献

1. Porteous MK, Diamond JM, Christie JD. Primary graft dysfunction: Lessons learned about the first 72 h after lung transplantation. Curr Opin Organ Transplant. 2015;20(5):506–514.

2. Christie JD, Kotloff RM, Ahya VN, et al. The effect of primary graft dysfunction on survival after lung transplantation. Am J Respir Crit Care Med. 2005;171(11):1312– 1316.

3. Fiser SM, Tribble CG, Long SM, et al. Ischemia-reperfusion injury after lung transplantation increases risk of late bronchiolitis obliterans syndrome. Ann Thorac Surg. 2002; 73(4): 1041–1047; discussion 1047–1048.

4. Diamond JM, Lee JC, Kawut SM, et al. Clinical risk factors for primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med. 2013;187(5):527–534.

5. Elgharably H, Okamoto T, Ayyat KS, et al. Human Lungs Airway Epithelium Upregulate MicroRNA-17 and MicroRNA-548b in Response to Cold Ischemia and Ex Vivo Reperfusion. Transplantation. 2020;104(9):1842–1852.

6. Stone JP, Ball AL, Crichley W, et al. Ex Vivo Lung Perfusion Improves the Inflammatory Signaling Profile of the Porcine Donor Lung Following Transplantation. Transplantation. 2020;104(9):1899–1905.

7. Arcasoy SM, Kotloff RM. Lung transplantation. N Engl J Med. 1999;340(14):1081– 1091.

8. de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167(4):490–511.

9. Shen H, Kreisel D, Goldstein DR. Sterile inflammation: Sensing and reacting to damage. J Immunol. 2013;191(6):2857–2863.

10. Shimamoto A, Pohlman TH, Shomura S, Tarukawa T, Takao M, Shimpo H. Toll-like receptor 4 mediates lung ischemia-reperfusion injury. Ann Thorac Surg. 2006;82(6):2017–2023.

11. Ambrosio G, Tritto I. Reperfusion injury: experimental evidence and clinical implications. Am Heart J. 1999;138(2 Pt 2):S69–S75.

12. Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. Lipid mediator class switching during acute inflammation: Signals in resolution. Nat Immunol. 2001;2(7):612–619.

13. Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2014;7(2):a016311.

14. Leuti A, Maccarrone M, Chiurchiù V. Proresolving lipid mediators: Endogenous modulators of oxidative stress. Oxid Med Cell Longev. 2019; 2019: 8107265.

15. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101.

16. Chiang N, Gronert K, Clish CB, O'Brien JA, Freeman MW, Serhan CN. Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion. J Clin Invest. 1999;104(3):309–316.

17. Maddox JF, Serhan CN. Lipoxin A4 and B4 are potent stimuli for human monocyte migration and adhesion: selective inactivation by dehydrogenation and reduction. J Exp Med. 1996;183(1):137–146.

18. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol. 2000;164(4):1663–1667.

19. Fiore S, Maddox JF, Perez HD, Serhan CN. Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J Exp Med. 1994;180(1):253– 260.

20. Fiore S, Romano M, Reardon EM, Serhan CN. Induction of functional lipoxin A4 receptors in HL-60 cells. Blood. 1993;81(12):3395–3403.

21. Chiang N, Dalli J, Colas RA, Serhan CN. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J Exp Med. 2015;212(8):1203–1217.

22. Arita M, Bianchini F, Aliberti J, et al. Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med. 2005;201(5):713–722.

23. Tanaka S, Chen-Yoshikawa TF, Kajiwara M, et al. Protective effects of imatinib on ischemia/reperfusion injury in rat lung. Ann Thorac Surg. 2016;102(5):1717–1724.

24. Takahashi A, Hamakawa H, Sakai H, et al. Noninvasive assessment for acute allograft rejection in a rat lung transplantation model. Physiol Rep. 2014;2(12):e12244.

25. Colas RA, Shinohara M, Dalli J, Chiang N, Serhan CN. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am J Physiol Cell Physiol. 2014;307(1):C39–C54.

26. Liu G, Feinstein SI, Wang Y, et al. Comparison of glutathione peroxidase 1 and peroxiredoxin 6 in protection against oxidative stress in the mouse lung. Free Radic Biol Med. 2010;49(7):1172–1181.

27. Han Z, Li Y, Yang B, et al. Agmatine Attenuates Liver Ischemia Reperfusion Injury by Activating Wnt/β-catenin Signaling in Mice. Transplantation. 2020;104(9):1906– 1916.

28. Sun YP, Oh SF, Uddin J, et al. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem. 2007;282(13):9323–9334.

29. Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: Evidence for anti-inflammatory receptors. J Exp Med. 1997;185(9):1693–1704.

30. Serhan CN, Maddox JF, Petasis NA, et al. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry. 1995;34(44):14609–14615.

31. Krishnamoorthy S, Recchiuti A, Chiang N, Fredman G, Serhan CN. Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am J Pathol. 2012;180(5):2018–2027.

32. Mottola G, Chatterjee A, Wu B, Chen M, Conte MS. Aspirin-triggered resolvin D1 attenuates PDGF-induced vascular smooth muscle cell migration via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway. PLoS One. 2017;12(3):e0174936.

33. Ortiz-Muñoz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood. 2014;124(17):2625–2634.

34. Hsiao HM, Sapinoro RE, Thatcher TH, et al. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation. PLoS One. 2013;8(3):e58258.

35. Hsiao HM, Thatcher TH, Colas RA, Serhan CN, Phipps RP, Sime PJ. Resolvin D1 reduces emphysema and chronic inflammation. Am J Pathol. 2015;185(12):3189-3201.

36. Wang H, Anthony D, Yatmaz S, et al. Aspirin-triggered resolvin D1 reduces pneumococcal lung infection and inflammation in a viral and bacterial coinfection pneumonia model. Clin Sci (Lond). 2017;131(18):2347–2362.

37. Eickmeier O, Seki H, Haworth O, et al. Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury. Mucosal Immunol. 2013;6(2):256–266.

38. Yang JX, Li M, Chen XO, et al. Lipoxin A4 ameliorates lipopolysaccharide-induced lung injury through stimulating epithelial proliferation, reducing epithelial cell apoptosis, and inhibits epithelial–mesenchymal transition. Respir Res. 2019;20(1):192.

39. Sham HP, Walker KH, Abdulnour RE, et al. 15-epi-lipoxin A4, resolvin D2, and resolvin D3 induce NF-κB regulators in bacterial pneumonia. J Immunol. 2018;200(8):2757–2766.

40. Hsiao HM, Fernandez R, Tanaka S, et al. Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1β. J Clin Invest. 2018;128(7):2833–2847.

41. Sun Q, Wu Y, Zhao F, Wang J. Maresin 1 ameliorates lung ischemia/reperfusion injury by suppressing oxidative stress via activation of the Nrf-2-mediated HO-1 signaling pathway. Oxid Med Cell Longev. 2017;2017:9634803.

42. Zhao Q, Wu J, Hua Q, et al. Resolvin D1 mitigates energy metabolism disorder after ischemia-reperfusion of the rat lung. J Transl Med. 2016;14:81.

43. Zhao Q, Wu J, Lin Z, et al. Resolvin D1 alleviates the lung ischemia reperfusion injury via complement, immunoglobulin, TLR4, and inflammatory factors in rats. Inflammation. 2016;39(4):1319–1333.

44. Sun W, Wang ZP, Gui P, et al. Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation. Int Immunopharmacol. 2014;23(1):247–253.

45. Fukunaga K, Kohli P, Bonnans C, Fredenburgh LE, Levy BD. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J Immunol. 2005;174(8):5033–5039.

46. Levy BD, Zhang QY, Bonnans C, et al. The endogenous pro-resolving mediators lipoxin A4 and resolvin E1 preserve organ function in allograft rejection. Prostaglandins Leukot Essent Fatty Acids. 2011;84(1-2):43–50.

47. Machado MG, Tavares LP, Souza GVS, et al. The Annexin A1/FPR2 pathway controls the inflammatory response and bacterial dissemination in experimental pneumococcal pneumonia. FASEB J. 2020;34(2):2749–2764.

48. Luan H, Wang C, Sun J, et al. Resolvin D1 protects against ischemia/reperfusion-induced acute kidney injury by increasing Treg percentages via the ALX/FPR2 pathway. Front Physiol. 2020;11:285.

49. García RA, Ito BR, Lupisella JA, et al. Preservation of post-infarction cardiac structure and function via long-term oral formyl peptide receptor agonist treatment. JACC Basic Transl Sci. 2019;4(8):905–920.

50. Vital SA, Becker F, Holloway PM, et al. Formyl-peptide receptor 2/3/lipoxin A4 receptor regulates neutrophil-platelet aggregation and attenuates cerebral inflammation: Impact for therapy in cardiovascular disease. Circulation. 2016;133(22):2169–2179.

51. Senchenkova EY, Ansari J, Becker F, et al. Novel role for the AnxA1-Fpr2/ALX signaling axis as a key regulator of platelet function to promote resolution of inflammation. Circulation. 2019;140(4):319–335.

52. Krishnadasan B, Naidu BV, Byrne K, Fraga C, Verrier ED, Mulligan MS. The role of proinflammatory cytokines in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2003;125(2):261–272.

53. Nakamura K, Kageyama S, Kupiec-Weglinski JW. Innate immunity in ischemia-reperfusion injury and graft rejection. Curr Opin Organ Transplant. 2019;24(6):687–693.

54. Kreisel D, Sugimoto S, Zhu J, et al. Emergency granulopoiesis promotes neutrophil-dendritic cell encounters that prevent mouse lung allograft acceptance. Blood. 2011;118(23):6172–6182.

55. Bae YS, Lee HY, Jo EJ, et al. Identification of peptides that antagonize formyl peptide receptor-like 1-mediated signaling. J Immunol. 2004;173(1):607–614.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る