リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Methods for Syntheses of Five-Membered Hetero- and Carbocyclic Compounds via C?F Bond Activation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Methods for Syntheses of Five-Membered Hetero- and Carbocyclic Compounds via C?F Bond Activation

森岡, 龍太郎 筑波大学 DOI:10.15068/0002005514

2022.11.17

概要

Halogens, group 17 elements such as iodine, bromine, chlorine, and fluorine, are indispensable elements in chemistry. They have served as well-convertible moieties in chemicals, except for fluorine. The activation of carbon–halogen bonds is one of the most typical conversion methods in the whole history of chemistry. Particularly, transition-metal-catalyzed coupling reactions using organic halides have been developed as reliable methods for carbon–carbon (C–C) bond formation,[1] which proceeds through oxidative addition of carbon–halogen (C–X) bonds to metals. However, coupling via carbon–fluorine (C–F) bond cleavage is still far from common. The difficulty in activating C–F bonds is mainly due to its high bond dissociation energy (Table 1-1).[2,3] Furthermore, properties peculiar to fluorine such as low Lewis basicity and weak leaving group ability also render C–F bond activation difficult.

 Notwithstanding its difficulty, C–F bond activation has been eagerly studied because of its potential for the synthesis of chemicals used in various fields, such as pharmaceutical, agrochemical, and material sciences.[4,5] To solve the challenging problem, transition metals have been employed. Although oxidative addition of C–F bonds to transition metals is hard to occur, in some cases it has been accomplished and typically utilized for coupling reactions with organometallic reagents. The first example via the metal-catalyzed aromatic C–F bond activation is the Kumada coupling of fluorobenzene with an isopropylmagnesium reagent, which was reported in 1973 (eq 1-1).[6] In this reaction, oxidative addition of the C–F bond of fluorobenzene to an in situ-generated nickel(0) species first proceeds to generate an arylnickel fluoride intermediate. Subsequent transmetalation, hydride migration, and reductive elimination afford propylbenzene. The ligand, bis(dimethylphosphino)ethane, has an important role in the migration process. Thirty years later, the Suzuki–Miyaura coupling of fluoroarenes bearing electron-withdrawing groups was achieved with arylboronic acids by Yu (eq 1-2).[7] In 2011, Chatani and coworkers reported the nickel-catalyzed Suzuki–Miyaura coupling of fluoroarenes without electron- withdrawing groups (eq 1-3).[8]

 Vinylic C–F bond activation has been also achieved with transition metals. In 2005, Tamao achieved the Negishi coupling of difluorostyrene derivatives with arylzinc reagents (eq 1-4).[9] Ogoshi and coworkers reported the Hiyama coupling of tetrafluoroethylene with arylsilanes (eq 1-5).[10]

 Recently, metal-catalyzed C–F bond activation on sp3 carbon atoms via oxidative addition has been developed. The first C–C bond formation via allylic C–F bond activation was accomplished by a nickel catalyst with the electrochemical method. The electrochemically reduced nickel catalyst induced oxidative addition to afford allylnickel intermediates. Subsequent carboxylation with bubbled CO2 followed by methylation with iodomethane gave the ester with a fluoroalkene moiety (eq 1-6).[11] Fujii reported a palladium-catalyzed reduction of difluoroallylic compounds without electrochemistry. In this reaction, difluoroallylic compounds underwent oxidative addition to palladium to generate π-allylpalladium intermediates. The Tsuji–Trost-type reactions with phenylsilane afforded the reduced products, monofluoroalkenes (eq 1-7).[12] Cyclic difluoroallylic compounds also underwent palladium-catalyzed oxidative addition, in which subsequent C–N bond formation with morpholine afforded the corresponding products (eq 1-8).[13] As described above, aromatic, vinylic, and allylic C–F bond activation via oxidative addition has been examined mainly during the last two decades. However, the necessity of expensive transition metals and limitations in the substrates remain major problems. Thus, efficient methods for C–F bond activation, which resolves these problems, are eagerly required.

この論文で使われている画像

参考文献

Chapter 1

[1] (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron. Lett. 1965, 4387-4388. (b) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374-4376. (c) Corriu, R. J. P.; Massse, J. P. J. Chem. Soc., Chem. Commun. 1972, 144. (d) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. (e) Heck, R. F.; Nolley, Jr., J. P. J. Org. Chem. 1972, 37, 2320-2322. (f) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 50, 4467-4470. (g) King, A. O.; Okukado, N.; Negishi, E. J. Chem. Soc., Chem. Commun. 1977, 683-684. (h) Negishi, E; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821-1823. (i) Kosugi, M. Sasazawa, K.; Shimizu, Y.; Migita, T. Chem. Lett. 1977, 301-302. (j) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636-3638. (j) Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866- 867. (k) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437-3440. (l) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918-920.

[2] (a) Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Cornell University Press, Ithaca, NY, 1939. (b) Bondi, A. J. Phys. Chem. 1964, 68, 441–451. (c) Smart, B. E. J. Fluorine Chem. 2001, 109, 3–11. (d) O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319.

[3] (a) Kiolinger, J. L.; Richmond, T. G.; Osterberg, C. E. Chem. Rev. 1994, 94, 373–431. (b) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119–2183. (c) Clot, E.; Eisenstein, O.; Jasim, N.; Macgregor, S. A.; McGrady, J. E.; Perutz, R. N. Acc. Chem. Res. 2011, 44, 333–348. (d) Klahn, M; Rosenthal, U. Organometallics 2012, 31, 1235–1244. (e) Kuehnel, M. F.; Lentz, D.; Brayn, T. Angew. Chem., Int. Ed. 2013, 52, 3328–3348. (f) Stahl, T.; Klare, H. F. T.; Oestreich, M. ACS Catal. 2013, 3, 1578–1587. (g) Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Chem. Rev. 2015, 115, 931–972. (h) Unzner, T. A.; Magauer, T. Tetrahedron Lett. 2015, 56, 877–883. (i) Zhang, X.; Cao, S. Tetrahedron Lett. 2017, 58, 375–392.

[4] (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881–1886. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320–330. (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359–4369. (d) O’Hagan J. Fluorine Chem. 2010, 131, 1071–1081.

[5] (a) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007, 1003–1022. (b) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J. Chem. Soc. Rev. 2011, 40, 3496–3508. (c) Kirsch, P. J. Fluorine Chem. 2015, 177, 29–36.

[6] Kiso, Y.; Tamao, K.; Kumada, M. J. Organomet. Chem. 1973, C12-C14.

[7] Kim, Y. M. and Yu, S. J. Am. Chem. Soc. 2003, 125, 1696-1697.

[8] Tobisu, M.; Xu, T.; Shimasaki, N.; Chatani, N. J. Am. Chem. Soc. 2011,133, 19505-19511.

[9] Saeki, M.; Takashima, M.; Tamao, K. Synlett 2005, 1771-1774.

[10] Saijo, H.; Sakaguchi, H.; Ohashi, M.; Ogoshi, S. Organomet. 2014, 33, 3669-3672.

[11] Chiozza, E.; Desigaud, M.; Greiner, J.; Duñach, E. Tetrahedron Lett. 1998, 39, 4831-4834.

[12] Narumi, T.; Tomita, K.; Inokuchi, E.; Kobayashi, K.; Oishi, S.; Ohno, H.; Fujii, N. Org. Lett. 2007, 9, 3465-3468.

[13] Pigeon, X.; Bergeron, M.; Barabé, F.; Dubé, P.; Frost, H. N.; Paquin, J.-F. Angew. Chem. Int. Ed. 2010, 49, 1123-1127.

[14] Hertel, L. W.; Kroin, J. S.; Misner, J. W.; Tustin, J. M. J. Org. Chem. 1988, 53, 2406-2409.

[15] Murakami, E.; Tolstykh, T.; Bao, H.; Niu, C.; Steuer Holly, M. M.; Bao, D.; Chang, W.; Espiritu, C.; Bansal, S.; Lam, A. M.; J. Biol. Chem. 2010, 285, 34337-34347.

[16] (a) Martín-Santamaría, S.; Carroll, M. A.; Carroll, C. M.; Carter, C. D.; Pike, V. W.; Rzepa, H. S.; Widdowson, D. A. Chem. Commun. 2000, 649– 650. (b) Taylor, S. D.; Kotoris, C. C.; Hum, G. Tetrahedron 1999, 55, 12431– 12477. (c) Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31– 44. (d) Nyffeler, P. T.; Durón, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem. Int. Ed. 2005, 44, 192– 212. (e) Kiselvov, A. S. Chem. Soc. Rev. 2005, 34, 1031– 1037.

[17] Forrest, A. K. and O’Hanlon, P. J. Tetrahedron Lett. 1995, 36, 2117-2118.

[18] Yamada, S. and Knochel, P. Synthesis 2010, 2490-2494.

[19] Herdewjin, P.; Balzarini, J.; Clercq, E. D.; Pauwels, R.; Baba, M.; Broder, S.; Vanderhaeghe, H. J. Med. Chem. 1987, 30, 1270-1278.

[20] Chong, Y.; Gumina, G.; Mathew, J. S.; Schinazi, R.; Chu, C. K. J. Med. Chem. 2003, 46, 3245-3256.

[21] Ichikawa, J.; Wada, Y.; Okauchi, T.; Minami, T. Chem. Commun. 1997, 16, 1537-1538

[22] (a) Ichikawa, J. Chim. Oggi, 2007, 25, 54-57. (b) Ichikawa, J.; Wada, Y.; Okauchi, T.; Minami, T. Chem. Commun. 1997, 1537-1538. (c) Ichikawa, J.; Wada, Y.; Fujiwara, M.; Sakoda, K. Synthesis, 2002, 1917-1936. (d) Ichikawa, J; Nadano, R.; Mori, T.; Wada, Y. Org. Synth. 2006, 83, 111-120. (e) Ichikawa, J. Org. Synth. 2011, 88, 162-167.

[23] (a) Ichikawa, J.; Wada, Y.; Okauchi, T.; Minami, T. Chem. Commun. 1997, 16, 1537-1538. (b) Ichikawa, J.; Wada, Y.; Okauchi, T.; Fujiwara, M.; Sakoda, K. Synthesis 2002, 13, 1917-1936. (c) Ichikawa, J.; Nadano, R.; Mori, T.; Wada, Y. Org. Synth. 2006, 83, 111-120.

[24] Ueno, T.; Toda, H.; Yasunami, M.; Yoshifuji, M. Bull. Chem. Soc. Jpn. 1996, 69, 1645-1656.

[25] Moss, R. A.; Xue, S.; Sauer, R. R. J. Am. Chem. Soc. 1996, 118, 10307-10308.

[26] Sultana, S. and Lee, Y. R. Adv. Synth. Catal. 2020, 362, 927-941.

[27] (a) Ichistuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Angew. Chem. Int. Ed. 2014, 53, 7564-7568. (b) Ichitsukuka, T.; Fujita, T.; Ichikawa, J. ACS Catal. 2015, 5, 5947-5950. (c) Fujita, T.; Arita, T.; Ichitsuka, T.; Ichikawa, J. Dalton Trans. 2015, 44, 19460-19463.

Chapter 2

[1] Fluorine in Heterocyclic Chemistry vol. 1 and 2, ed. Nenajdenko, V. Springer, Heidelberg, 2014.

[2] Sofia, M. J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda, S.; Reddy, P. G.; Ross, B. S.; Wang, P.; Zhang, H.-R.; Bansal, S.; Espiritu, C.; Keilman, M.; Lam, A. M.; Steuer, H. M. M.; Niu, C.; Otto, M. J.; Furman, P. A. J. Med. Chem. 2010, 53, 7202–7218.

[3] Gandhi, V. and Plunkett, W. Cancer Res. 1990, 50, 3675–3680.

[4] Chang, C.-S.; Negishi, M.; Nakano, T.; Morizawa, Y.; Matsumura, Y.; Ichikawa, A. Prostaglandins 1997, 53, 83–90.

[5] For selected reviews on electrophilic fluorination, see: (a) Taylor, S. D.; Kotoris, C. C.; Hum, G. Tetrahedron 1999, 55, 12431–12477. (b) Singh, R. P. and Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31–44. (c) Nyffeler, P. T.; Durón, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem. Int. Ed. 2005, 44, 192–212. (d) Kiselyov, A. S. Chem. Soc. Rev. 2005, 34, 1031–1037.

[6] For selected reviews on nucleophilic fluorination, see: (a) Singh, R. P. and Shreeve, J. M. Synthesis 2002, 2561–2578. (b) Wu, J. Tetrahedron Lett. 2014, 55, 4289–4294.

[7] For recent reports on nucleophilic 5-endo-trig cyclization, see: (a) Tong, K.; Tu, J.; Qi, X.; Wang, M.; Wang, Y.; Fu, H.; Pittman, Jr. C. U.; Zhou, A. Tetrahedron 2013, 69, 2369–2375. (b) En, D.; Zou, G.-F.; Guo, Y.; Liao, W.-W. J. Org. Chem. 2014, 79, 4456–4462. (c) Johnston, C. P.; Kothari, A. Sergeieva, T.; Okovytyy, S. I.; Jackson, K. E.; Paton R. S.; Smith, M. D. Nat. Chem. 2015, 7, 171–177. (d) Kapoorr, R.; Singh, S. N.; Tripathi, S.; Yadav, L. D. S. Synlett 2015, 26, 1201–1206. (e) Sharma, K.; Wolstenhulme, J. R.; Painter, P. P.; Yeo, D.; Grande-Carmona, F.; Johnston, C. P.; Tantillo, D. J.; Smith, M. D. J. Am. Chem. Soc. 2015, 137, 13414–13424. (f) Williams, B. M. and Trauner, D. Angew. Chem. Int. Ed. 2016, 55, 2191–2194. (g) Markwell-Heys A. W. and George, J. H. Org. Biomol. Chem. 2016, 14, 5546–5549. (h) Xiao, T.; Li, L.; Zhou, L. J. Org. Chem. 2016, 81, 7908–7916. (i) Zhang, B.; Zhang, X.; Hao, J.; Yang, C. Org. Lett. 2017, 19, 1780–1783. (j) Hao, J.; Milcent, T.; Retailleau, P.; Soloshonok, . A.; Ongeri, S.; Crousse, B. Eur. J. Org. Chem. 2018, 3688–3692.

[8] For Baldwin’s rules, see: (a) Baldwin, J. E. J. Chem. Soc. Chem. Commun. 1976, 734–736. (b) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. C. J. Chem. Soc. Chem. Commun. 1976, 736–738.

[9] (a) Ichikawa, J.; Wada, Y.; Okauchi, T.; Minami, T. Chem. Commun. 1997, 1537–1538. (b) Ichikawa, J.; Fujiwara, M.; Wada, Y.; Okauchi, T.; Minami, T. Chem. Commun. 2000, 1887–1888. (c) Ichikawa, J.; Wada, Y.; Fujiwara, M.; Sakoda, K. Synthesis 2002, 1917–1936. (d) Fujita, T.; Sakoda, K.; Ikeda, M.; Hattori, M.; Ichikawa, J. Synlett 2013, 24, 57–60. (e) Fujita, T.; Ikeda, M.; Hattori, M.; Sakoda, K.; Ichikawa, J. Synthesis 2014, 46, 1493–1505.

[10] (a) Ichikawa, J.; Iwai, Y.; Nadano, R.; Mori, T.; Ikeda, M. Chem. Asian J. 2008, 3, 393–406. (b) Ichikawa, J. J. Synth. Org. Chem. Jpn. 2010, 68, 1175–1184.

[11] For similar SN2'-type reactions, see: (a) Fuchibe, K.; Takahashi, M.; Ichikawa, J. Angew. Chem. Int. Ed. 2012, 51, 12059–12062. (b) Bergeron, M.; Guyader, D.; Paquin, J.-F. Org. Lett. 2012, 14, 5888–5891. (c) Yang, J.; Mao, A.; Zhu, W.; Luo, X.; Zhu, C.; Xiao, Y.; Zhang, J. Chem. Commun. 2015, 51, 8326–8329. (d) Fujita, T.; Sugiyama, K.; Sanada, S.; Ichitsuka, T.; Ichikawa, J. Org. Lett. 2016, 18, 248–251. (e) Fujita, T.; Takazawa, M.; Sugiyama, K.; Suzuki, N.; Ichikawa, J. Org. Lett. 2017, 19, 588–591.

[12] (a) Bach, R. D. and Wolber, G. J. J. Am. Chem. Soc. 1985, 107, 1352–1357. (b) Borrmann, T. and Stohrer, W.-D. Liebigs Ann. 1996, 1593–1597. (c) La Cruz, T. E. and Rychnovsky, S. D. Chem. Commun. 2004, 168–169.

[13] Nihei, T.; Iwai, N.; Matsuda, T.; Kitazume, T. J. Org. Chem. 2005, 70, 5912–5915.

[14] Min, Q.-Q.; Yin, Z.; Feng, Z.; Guo, W.-H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 1230–1233.

[15] For the synthesis of 3-fluoro-2,5-dihydrobenzofurans, see: (a) Mackman, R. L.; Lin, K.-Y.; Boojamra, C. G.; Hui, H.; Douglas, J.; Grant, D.; Petrakovsky, O.; Prasad, V.; Ray A. S.; Cihlar, T. Bioorg. Med. Chem. Lett. 2008, 18, 1116–1119. (b) Boojamra, C. G.; Mackman, R. L.; Markevitch, D. Y.; Prasad, V.; Ray, A. S.; Douglas, J.; Grant, D.; Kim, C. U.; Cihlar, T. Bioorg. Med. Chem. Lett. 2008, 18, 1120–1123. (c) Mackman, R. L.; Ray, A. S.; Hui, H. C.; Zhang, L.; Birkus, G.; Boojamra, C. G.; Desai, M. C.; Douglas, J. L.; Gao, Y.; Grant, D.; Laflamme, G.; Lin, K.-Y.; Markevitch, D. Y.; Mishra, R.; McDermott, M.; Pakdaman, R.; Petrakovsky, O. V.; Vela, J. E.; Cihlar, T. Bioorg. Med. Chem. 2010, 18, 3606–3617. (d) Srivastav, N. C.; Shakya, N.; Mak, M.; Agrawal, B.; Tyrrell, D. L.; Kumar, R. J. Med. Chem. 2010, 53, 7156–7166. (e) Rayala, R.; Giuglio-Tonolo, A.; Broggi, J.; Terme, T.; Vanelle, P.; Theard, P.; Médebielle, M.; Wnuk, S. Tetrahedron 2016, 72, 1969–1977.

[16] 4-Phenylated 2,2-difluorohomoallylic alcohols 1l was prepared via (i) coupling of bromodifluoromethyl ketones 2a with acetone in the presence of zinc powder, (ii) THP protection of the hydroxy group, (iii) Wittig reaction with benzyltriphenylphosphonium bromide and (iv) deprotection. For details, see Electronic Supplementary Information.

[17] For the synthesis of 4-fluorofuran-2(5H)-ones, see: (a) Zhou, C.; Ma, Z.; Gu, Z.; Fu, C.; Ma, S. J. Org. Chem. 2008, 73, 772–774. (b) Lü, B.; Fu, C.; Ma, S. Org. Biomol. Chem. 2010, 8, 274–281. (c) Liu, Y.; Zhu, J.; Qian, J.; Xu, Z. J. Org. Chem. 2012, 77, 5411–5417. (d) Liao, F.-M.; Cao, Z.-Y.; Yu, J.-S.; Zhou, J. Angew. Chem. Int. Ed. 2017, 56, 2459–2463.

[18] (a) Salmond, W. G.; Barta, M. A.; Havens, J. L. J. Org. Chem. 1978, 43, 2057–2059. (b) Alberto, J. M.; Miguel, C.; Santiago, R.; Encarnación, C.; María, K. N. Tetrahedron 2003, 59, 4085-4101.

[19] Senel, P.; Tichotová, L.; Votruba, I.; Buchta, V.; Spulák, M.; Kunes, J.; Nobilis, M.; Krenk, O.; Pour, M. Bioorg. Med. Chem. 2010, 18, 1988–2000.

Chapter 3

[1] (a) Santelli-Rouvier, C.; Santelli, M. Synthesis 1983, 429–442. (b) Ramaiah, M. Synthesis 1984, 529–570. (c) Denmark, S. E. in Comprehensive Organic Synthesis, Vol. 5 (Eds.: Trost, B. M.; Fleming, I.), 1991, 751–784. (d) Habermas, K. L.; Denmark, S. E.; Jones, T. K. Org. React. 1994, 45, 1–158.

[2] For recent reviews on the Nazarov cyclization and its variations, see: a) West, F. G.; Scadeng, O.; Wu, Y.-K.; Fradette, R. J.; Joy, S. in Comprehensive Organic Synthesis, 2nd Ed. Vol. 5 (Eds.: Knochel, P. and Molander, G. A.), Elsevier, Amsterdam, 2014, 827–866. b) Harmata, M.; Chemtracts 2004, 17, 416–435. c) Pellissier, H. Tetrahedron 2005, 61, 6479–6517. d) Frontier, A. J.; Collison, C. Tetrahedron 2005, 61, 7577–7606. e) Tius, M. A. Chem. Soc. Rev. 2014, 43, 2979–3002. f) Wenz, D. R.; Read de Alaniz, J. Eur. J. Org. Chem. 2015, 23- 37. g) Simeonov, S. P.; Nunes, J. P. M.; Guerra, K.; Kurteva, V. B.; Afonso, C. A. M.; Chem. Rev. 2016, 116, 5744–5893. h) Ichikawa, J. J. Synth. Org. Chem. Jpn. 2010, 68, 1175–1184.

[3] Waters, S. P.; Tian, Y.; Li, Y.-M.; Danishefsky, S. J. J. Am. Chem. Soc. 2005, 127, 13514-13515.

[4] Smith III, A. B. and Shvartsbart, A. J. Am. Chem. Soc. 2015, 137, 3510-3519.

[5] Fuchibe, K; Takayama, R.; Yokoyama, T.; Ichikawa, J. Chem. Eur. J. 2017, 23, 2831-2838.

[6] Fuchibe, K.; Hatta, H.; Ph, K.; Oki, R.; Ichikawa, J. Angew. Chem. Int. Ed. 2017, 129, 5984-5987.

Chapter 4

[1] Nenajdenko, V. ed. 'Fluorine in Heterocyclic Chemistry vol. 1 and 2', Springer, Heidelberg, 2014.

[2] Nash, S. A.; Gammill, R. B. Tetrahedron Lett. 1987, 28, 4003-4006.

[3] Martín-Santamaría, S.; Carroll, M. A.; Carroll, C. M.; Carter, C. D.; Pike, V. W.; Rzepa, H. S.; Widdowson, H. A. Chem. Commun. 2000, 649-650.

[4] Yuan, X.; Yao, J.-F.; Tang, Z.-Y. Org. Lett. 2017, 19, 1410-1413.

[5] Lu, B.; Shen, X.; Zhang, L.; Liu, D.; Zhang, C.; Cao, J.; Shen, R.; Zhang, J.; Wang, D.; Wan, H.; Xu, Z.; Ho, M.-H.; Zhang, M.; Zhang, L.; He, F.; Tao, W. ACS Med. Chem. Lett. 2018, 9, 98-102.

[6] Barton, D. H. R.; Hesse, R. H.; Jackman, G. P.; Pechet, M. M. J. Chem. Soc. Perkin Trans. 1 1977, 2604- 2608.

[7] Wang, M.; Liu, X.; Zhou, L.; Zhu, J.; Sun, X. Org. Biomol. Chem. 2015, 13, 3190-3193.

[8] Milner, P. J.; Yang, Y.; Buchwald, S. L. Organometallics 2015, 34, 4775-4780.

[9] Hariss, L.; Bouhadir, K. H.; Roisnel, T.; Grée, R.; Hachem, A. Synlett 2017, 28, 195-200.

[10] Narayanam, M. K.; Ma, G.; Champagne, P. A.; Houk, K. N.; Murphy, J. M. Synlett 2018, 29, 1131-1135.

[11] Taylor, S. D.; Kotoris, C. C.; Hum, G. Tetrahedron 1999, 55, 12431-12477.

[12] Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31-44.

[13] Nyffeler, P. T.; Durón, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem. Int. Ed. 2005, 44, 192-212.

[14] Kiselyov, A. S. Chem. Soc. Rev. 2005, 34, 1031-1037.

[15] Ichikawa, J. Pure Appl. Chem. 2000, 72, 1685-1689.

[16] Ichikawa, J.; Wada, Y.; Fujiwara, M.; Sakoda, K. Synthesis 2002, 1917-1936.

[17] Ichikawa, J. Chim. Oggi. 2007, 25, 54-57.

[18] Ichikawa, J. J. Synth. Org. Chem. Jpn. 2010, 68, 1175-1184

[19] Fujita, T.; Ichikawa, J. Heterocycles 2017, 95, 694-714.

[20] Ichikawa, J.; Wada, Y.; Okauchi, T.; Minami, T. Chem. Commun. 1997, 1537-1538.

[21] Ichikawa, J.; Fujiwara, M.; Wada, Y.; Okauchi, T.; Minami, T. Chem. Commun. 2000, 1887-1888.

[22] Fujita, T.; Morioka, R.; Arita, T.; Ichikawa, J. Chem. Commun. 2018, 54, 12938-12941.

[23] Fujita, T.; Hattori, M.; Matsuda, M.; Morioka, R.; Jankins, T. C.; Ikeda, M.; Ichikawa, J. Tetrahedron 2019, 75, 36-46.

[24] Fuchibe, K.; Fushihara, K.; Ichikawa, J. Org. Lett. 2020, 22, 2201-2205.

[25] Baldwin, J. E. J. Chem. Soc. Chem. Commun. 1976, 734-736.

[26] Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. C. J. Chem. Soc. Chem. Commun. 1976, 736-738.

[27] Johnston, C. P.; Kothari, A.; Sergeieva, T.; Okovytyy, S. L.; Jackson, K. E.; Paton, R. S.; Smith, M. D. Nat. Chem. 2015, 7, 171-177.

[28] Kapoorr, R.; Singh, S. N.; Tripathi, S.; Yadav, L. D. S. Synlett 2015, 26, 1201-1206.

[29] Sharma, K.; Wolstenhulme, J. R.; Painter, P. P.; Yeo, D.; Grande-Carmona, F.; Johnston, C. P.; Tantillo, D. J.; Smith, M. D. J. Am. Chem. Soc. 2015, 137, 13414-13424.

[30] Williams, B. M.; Trauner, D. Angew. Chem. Int. Ed. 2016, 55, 2191-2194.

[31] Markwell-Heys, A. W. and George, J. H. Org. Biomol. Chem. 2016, 14, 5546-5549.

[32] Xiao, T.; Li, L.; Zhou, L. J. Org. Chem. 2016, 81, 7908-7916.

[33] Zhang, B.; Zhang, X.; Hao, J.; Yang, C. Org. Lett. 2017, 19, 1780-1783.

[34] Hao, J.; Milcent, T.; Retailleau, P.; Soloshonok, V. A.; Ongeri, S.; Crousse, B. Eur. J. Org. Chem. 2018, 3688-3692.

[35] Zhang, X.; He, J.; Cao, S. Asian J. Org. Chem. 2019, 8, 279-282.

[36] Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513-7515.

[37] Guo, Z.-Q.; Chen, W.-Q.; Duan, X.-M. Org. Lett. 2010, 12, 2202-2205.

[38] Takeuchi, D.; Chiba, Y.; Takano, S.; Osakada, K. Angew. Chem. Int. Ed. 2013, 52, 12536-12540.

[39] Anilkumar, R. and Burton, D. J. J. Fluorine Chem. 2005, 126, 457-463.

[40] When 4-(2,2-difluorovinyl)-1,1’-biphenyl, a -difluorostyrene bearing no nucleophilic hydroxy group, was treated with DBU in DMF at 100 °C for 1 h, the difluorostyrene was completely consumed. Thus, initial defluorinative substitution of -difluoro-o-hydroxystyrenes with DBU might proceed prior to the cyclization, which could promote subsequent 5-endo-trig cyclization. In addition, the possibility that further isomerization into the iminium intermediate allows 5-exo-trig cyclization (formal 5-endo-trig cyclization) cannot be ruled out.

[41] Aitken, H. R. M.; Furkert, D. P.; Hubert, J. G.; Wood, J. M.; Brimble, M. A. Org. Biomol. Chem. 2013, 11, 5147-5155.

[42] Harvey, R. G.; Cortez, C.; Ananthanarayan, T. P.; Schmolka, S. J. Org. Chem. 1988, 53, 3936-3943.

[43] Landelle, G.; Turcotte-Savard, M.-O.; Marterer, J.; Champagne, P. A.; Paquin, J.-F. Org. Lett. 2009, 11, 5406-5409.

Chapter 5

[1] For selected reviews on transition-metal-catalyzed cross-coupling reactions of aryl halides with arylmetals, see: (a) Kumada, M. Pure Appl. Chem. 1980, 52, 669-679. (b) Negishi, E. Acc. Chem. Res. 1982, 15, 340-348. (c) Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508-524. (d) Miyaura N. and Suzuki, A. Chem. Rev. 1995, 95, 2457-2483. (e) Hiyama, T. and Hatanaka, Y. Pure Appl. Chem. 1994, 66, 1471-1478.

[2] For selected reviews on transition-metal-catalyzed direct arylation of aryl halides with arenes, see: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174-238. (b) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem. Int. Ed. 2009, 48, 9792-9826.

[3] For selected reviews on transition-metal-free direct arylation of aryl halides with arenes, see: (a) Sun, C.- L. and Shi, A.-J. Chem. Rev. 2014, 114, 9219-9280. (b) Rossi, R.; Lessi, M.; Manzini, C.; Marianetti G.; Bellina, F. Adv. Synth. Catal. 2015, 357, 3777-3814.

[4] (a) Suzuki, N.; Fujita, T.; Ichikawa, J. Org. Lett. 2015, 17, 4984-4987. (b) Suzuki, N.; Fujita, T.; Amsharov, K. Y.; Ichikawa, J. Chem. Commun. 2016, 52, 12948-12951.

[5] (a) Ichikawa, J.; Yokota, M.; Kudo T.; Umezaki, S. Angew. Chem. Int. Ed. 2008, 47, 4870-4873. (b) Fuchibe, K.; Takao, G.; Takahashi, H.; Ijima, S.; Ichikawa, J. Bull. Chem. Soc. Jpn. 2019, 92, 2019-2029.

[6] 2-Fluorobenzofurans are now more readily available than other positional isomers such as 3- fluorobenzofurans. See: (a) Ichikawa, J.; Wada, Y.; Okauchi, T.; Minami, T. Chem. Commun. 1997, 1537- 1538. (b) Morioka, R.; Fujita, T.; Ichikawa, J. Helv. Chim. Acta 2020, 103, e2000159. (c) Yuan, X.; Yao, J.- F.; Tang, Z.-Y. Org. Lett. 2017, 19, 1410-1413.

[7] (a) Allemann, O.; Duttwyler, S.; Romanato, P.; Baldridge, K. K.; Siegel, J. S. Science 2011, 332, 574-577. (b) Allemann, O.; Baldridge, K. K.; Siegel, J. S. Org. Chem. Front. 2015, 2, 1018-1021. (c) Shao, B.; Bagdasarian, A. L.; Popov, S.; Nelson, H. M. Science, 2017, 355, 1403-1407.

[8] (a) Amsharov, K. Y.; Kabdulov, M. A.; Jansen, M. Angew. Chem. Int. Ed. 2012, 51, 4594-4597. (b) Steiner, A.-K. and Amsharov, K. Y. Angew. Chem. Int. Ed. 2017, 56, 14732-14736. (c) Steiner, A.-K.; Sharapa, D. I.; Troyanov, S. I.; Nuss, J.; Amsharov, K. Y. Chem. Eur. J. 2021, 27, 6223-6229.

[9] The protons might be initially present in the reaction system as the superacid [HAlCl4-n(OH)n] formed from AlCl3 and a tiny amount of contaminated water. This is supported by the decrease in the reaction rate by the addition of molecular sieves.

[10] Even when the yields of 3 were low, 2-fluorobenzofurans 1 were completely consumed, and the dimers or trimers of 1 were obtained by their self-coupling.

[11] When the reactions were initiated at room temperature in Method A with smaller amounts of arenes 2, the formation of the dimers and/or trimers of 2-benzofurans 1 increased. Thus, Method A was applied mainly at –20 °C.

[12] Artini, M.; Papa, R.; Barbato, G.; Scoarughi, G. L.; Cellini, A.; Morazzoni, P.; Bombardelli, E.; Selan, L. Bioorg. Med. Chem. 2012, 20, 920-923.

[13] Delogu, G. L.; Matos, M. J.; Fanti, M.; Era, B.; Medda, R.; Pieroni, E.; Fais, A.; Kumar, A.; Pintus, F. Bioorg. Med. Chem. Lett. 2016, 26, 2308-2313.

[14] (a) Morelli, L.; Bernardi, A.; Sattin, S. Carbohydr. Res. 2014, 390, 33-41. (b) Heravi, M. M.; Zadsirjan, V.; Hamidi, H.; Amiri, P. H. T. RSC Adv. 2017, 7, 24470-24521.

[15] (a) Sun, A. D. and Love, J. A. Dalton Trans. 2010, 39, 10362-10374. (b) Weaver, J. and Senaweera, S. Tetrahedron 2014, 70, 7413-7428. (c) Yu, D.; Lu, L.; Shen, Q. Org. Lett. 2013, 15, 940-943. (d) Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Chem. Rev. 2015, 115, 931-972. (e) Dewanji, A.; Bülow, R. F.; Rueping, M. Org. Lett. 2020, 22, 1611-1617. (f) Nohira, I. and Chatani, N. ACS Catal. 2021, 11, 4644-4649.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る