リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Copper-Catalyzed Electrophilic Amination: An Umpolung Strategy for New CN Bond Formations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Copper-Catalyzed Electrophilic Amination: An Umpolung Strategy for New CN Bond Formations

Hirano, Koji 大阪大学

2023.03.01

概要

Nitrogen (N) is a main group 15 element that is
ubiquitously found in natural products, biologically active
compounds, and pharmaceutical agents.1 Additionally, many
recently reported aromatic functional organic materials contain
N as the key element because of the effective n-p conjugation.2
Accordingly, the development of C–N bond forming reactions
that introduce N into organic skeletons has been one research
area of long-standing interest to the synthetic community.
The nitrogen is a relatively electronegative element; its
electronegativity on Pauling scale is 3.04. In addition, the
amino group (R2N), which is the most common N-containing
organic functional group, has one lone pair and thus generally
works as the nucleophile. Therefore, to form the targeted
C–N bond, synthetic chemists have developed the nucleophilic
amination strategy, that is, the reaction of carbon electrophiles
with nitrogen nucleophiles of the type (M) H–NR2 (Scheme 1a).
The well-known examples of the nucleophilic amination
include the text-book SN2 reaction of alkyl halides with
amines3 and Pd-catalyzed Buchwald-Hartwig amination of aryl
halides with amines.4 On the other hand, umpolung (polarity
inversion), electrophilic amination using carbon nucleophiles
and nitrogen electrophiles of the type X–NR2 (X = leaving
group, e.g., halides and OR’) can be a good alternative to the
nucleophilic amination (Scheme 1b). ...

この論文で使われている画像

参考文献

1.

(a) R. Hili, A. K. Yudin, Nat. Chem. Biol. 2006, 2, 284.

(b) A. Ricci, Amino Group Chemistry: From Synthesis to

the Life Sciences, Wiley-VCH, Weinheim, Germany,

2007.

2.

(a) Y. Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953.

(b) L.-L. Li, E. W.-G. Diau, Chem. Soc. Rev. 2013, 42,

291.

3.

For example, see: J. McMurry, Organic Chemistry, 9th

edition, Brooks/Cole Pub Co, 2015, pp. 313–322.

4.

For a recent short review, see; P. A. Forero-Cortés, A. M.

Haydl, Org. Process Res. Dev. 2019, 23, 1478.

5.

E. Erdik, M. Ay, Chem. Rev. 1989, 89, 1947.

6.

H. Tsutsui, Y. Hayashi, K. Narasaka, Chem. Lett. 1997,

317.

7.

A. M. Berman, J. S. Johnson, J. Am. Chem. Soc. 2004,

126, 5680.

8.

(a) T. Kawano, K. Hirano, T. Satoh, M. Miura, J. Am.

Chem. Soc. 2010, 132, 6900. (b) N. Matsuda, K. Hirano,

T. Satoh, M. Miura, Org. Lett. 2011, 13, 2860.

9.

For selected examples, see: (a) E. J. Yoo, S. Ma, T.-S.

Mei, K. S. L. Chan, J.-Q. Yu, J. Am. Chem. Soc. 2011,

137, 7652. (b) C. Grohmann, H. Wang, F. Glorius, Org.

Lett. 2012, 14, 656. (c) C. Grohmann, H. Wang, F.

Glorius, Org. Lett. 2013, 15, 3014. (d) M. Shang, S.-H.

Zeng, S.-Z. Sun, H.-X. Dai, J.-Q. Yu, Org. Lett. 2013, 15,

5286. (e) Y. Park, K. T. Park, J. G. Kim, S. Chang, J. Am.

Chem. Soc. 2015, 137, 4534.

10. For selected reviews and perspectives, see: (a) K.

Narasaka, M. Kitamura, Eur. J. Org. Chem. 2005, 4505.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

(b) E. Ciganek, Org. React. 2009, 72, 1. (c) T. J. Barker,

E. R. Jarvo, Synthesis 2011, 3954. (d) M. Corpet, C.

Gosmini, Synthesis 2014, 46, 2258. (e) X. Dong, Q. Liu,

Y. Dong, H. Liu, Chem. Eur. J. 2017, 23, 2481. (f) K.

Hirano, M. Miura, J. Am. Chem. Soc. 2022, 144, 648.

(a) D. G. Hall, Boronic Acids, 2nd ed. Wiley-VCH,

Weinheim, Germany, 2011. (b) T. Hiyama, M. Oestreich,

Organosilicon Chemistry: Novel Approaches and

Reactions, Wiley-VCH, Weinheim, 2020.

(a) S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed. 2003,

42, 5400. (b) J. X. Qiao, P. Y. S. Lam, Synthesis 2011,

829.

(a) N. Matsuda, K. Hirano, T. Satoh, M. Miura, Angew.

Chem., Int. Ed. 2012, 51, 3642. Around the same time,

Lalic also reported the Cu-catalyzed electrophilic

amination of arylboronates with hydroxylamines for the

synthesis of hindered anilines; (b) R. P. Rucker, A. M.

Whittaker, H. Dang, G. Lalic, Angew. Chem., Int. Ed.

2012, 51, 3953.

(a) T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R.

Anastasi, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 390.

(b) J. M. Murphy, X. Liao, J. F. Hartwig, J. Am. Chem.

Soc. 2007, 129, 15434. (c) T. Ishiyama, H. Isou, T.

Kikuchi, N. Miyaura, Chem. Commun. 2010, 46, 159.

R. Sakae, K. Hirano, T. Satoh, M. Miura, Chem. Lett.

2013, 42, 1128.

Y. Miki, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2013,

15, 172.

Y. Nakao, H. Imanaka, A. K. Sahoo, A. Yada, T. Hiyama,

J. Am. Chem. Soc. 2005, 127, 6952.

Recently, Shimokawa and Yorimitsu reported the

successful electrophilic amination of ArSi(OEt)3 in the

presence of the IPrCuCl catalyst and AgF activator; Q.

Zhang, K. Hitoshio, H. Saito, J. Shimokawa, H. Yorimitsu,

Eur. J. Org. Chem. 2020, 4018.

Lalic reported the Cu-catalyzed electrophilic amination of

highly reactive alkyl-9-BBNs. R. P. Rucker, A. M.

Whittaker, H. Dang, G. Lalic, J. Am. Chem. Soc. 2012,

134, 6571.

A recent review on synthetic applications of

gem-diborylalkanes: R. Nallagonda, K. Padala, A.

Masarwa, Org. Biomol. Chem. 2018, 16, 1050. For

seminal work, see: (b) K. Endo, T. Ohkubo, M. Hirokami,

T. Shibata, J. Am. Chem. Soc. 2010, 132, 11033. (c) C.

Sun, B. Potter, J. P. Morken, J. Am. Chem. Soc. 2014, 136,

6534.

(a) R. Smoum, A. Rubinstein, V. M. Dembitsky, M.

Srebnik, Chem. Rev. 2012, 112, 4156. (b) F. Yang, M. Zhu,

J. Zhang, H. Zhou, MedChemComm 2018, 9, 201.

S. Nishino, K. Hirano, M. Miura, Org. Lett. 2019, 21,

4759.

N. Matsuda, K. Hirano, T. Satoh, M. Miura, Angew.

Chem., Int. Ed. 2012, 51, 11827.

K. Hiroya, S. Itoh, T. Sakamoto, J. Org. Chem. 2004, 69,

1126.

K. Hirano, T. Satoh, M. Miura, Org. Lett. 2011, 13, 2395.

N. Matsuda, K. Hirano, T. Satoh, M. Miura, J. Org. Chem.

2012, 77, 617.

(a) H. Ito, H. Yamanaka, J.-i. Tateiwa, A, Hosomi,

Tetrahedron Lett. 2000, 41, 6821. (b) H. Ito, C.

Kawakami, M. Sawamura, J. Am. Chem. Soc. 2005, 127,

16034.

D. S. Laitar, E. Y. Tsui, J. P. Sadighi, Organometallics

2006, 25, 2405.

M. J. Campbell, J. S. Johnson, Org. Lett. 2007, 9, 1521.

N. Matsuda, K. Hirano, T. Satoh, M. Miura, J. Am. Chem.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Soc. 2013, 135, 4934.

R. Sakae, N. Matsuda, K. Hirano, T. Satoh, M. Miura,

Org. Lett. 2014, 16, 1228.

R. Sakae, K. Hirano, T. Satoh, M. Miura, Angew. Chem.,

Int. Ed. 2015, 54, 613.

R. Sakae, K. Hirano, M. Miura, J. Am. Chem. Soc. 2015,

137, 6460.

(a) H. Noguchi, K. Hojo, M. Suginome, J. Am. Chem. Soc.

2007, 129, 758. (b) N. Iwadate, M. Suginome, J. Am.

Chem. Soc. 2010, 132, 2548.

K. Kato, K. Hirano, M. Miura, J. Org. Chem. 2017, 82,

10418.

K. Kato, K. Hirano, M. Miura, Chem. Eur. J. 2018, 24,

5775.

(a) W. S. Mahoney, D. M. Brestensky, J. M. Stryker, J.

Am. Chem. Soc. 1988, 110, 291. (b) C. Deutsch, N.

Krause, B. H. Lipshutz, Chem. Rev. 2008, 108, 2916.

For selected reviews, see: (a) L. Huang, M. Arndt, K.

Gooben, H. Heydt, L. Gooben, L. Chem. Rev. 2015, 115,

2596. (b) S. M. Coman, V. I. Parvulescu, Org. Process

Res. Dev. 2015, 19, 1327.

(a) T. E. Müller, M. Beller, Chem. Rev. 1998, 98, 675. (b)

A. M. Johns, N. Sakai, J. F. Hartwig, J. Am. Chem. Soc.

2006, 128, 9306. (c) A. J. Musacchio, B. C. Lainhart, X.

Zhang, S. G. Naguib, T. C. Sherwood, R. R. Knowles,

Science 2017, 355, 727.

Y. Miki, K. Hirano, T. Satoh, M. Miura, Angew. Chem.,

Int. Ed. 2013, 52, 10830.

D. Nishikawa, R. Sakae, Y. Miki, K. Hirano, M. Miura, J.

Org. Chem. 2016, 81, 12128.

Y. Miki, K. Hirano, M. Miura, Org. Lett. 2014, 16, 1498.

For an account, see: R. Y. Liu, S. L. Buchwald, Acc.

Chem. Res. 2020, 53, 1229.

S. Nishino, M. Miura, K. Hirano, Chem. Sci. 2021, 12,

11525.

S. Nishino, Y. Nishii, K. Hirano, Chem. Sci. 2022, 13,

14387.

T. Kobayashi, S. Nishino, M. Miura, K. Hirano, Org. Lett.

2022, 24, 1418.

R. Tacke, M. Merget, R. Bertermann, M. Bernd, T.

Beckers, T. Reissmann, Organometallics 2000, 19, 3486.

S. Nakamura, S. Nishino, K. Hirano, J. Org. Chem. 2023,

88, 1270.

D. Nishikawa, K. Hirano, M. Miura, J. Am. Chem. Soc.

2015, 137, 15620.

D. Nishikawa, K. Hirano, M. Miura, Org. Lett. 2016, 18,

4856.

N. Niljianskul, S. Zhu, S. L. Buchwald, Angew. Chem.,

Int. Ed. 2015, 54, 1638.

(a) N. A. Meanwell, J. Med. Chem. 2011, 54, 2529. (b) A.

K. Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388. (c)

R. Ramesh, D. S. Reddy, J. Med. Chem. 2018, 61, 3779.

K. Kato, K. Hirano, M. Miura, Angew. Chem., Int. Ed.

2016, 55, 14400.

T. Takata, D. Nishikawa, K. Hirano, M. Miura, Chem. Eur.

J. 2018, 24, 10975.

D.-W. Gao, Y. Gao, H. Shao, T.-Z. Qiao, X. Wang, B. B.

Sanchez, J. S. Chen, P. Liu, K. M. Engle, Nat. Catal.

2020, 3, 23.

S. Nishino, K. Hirano, M. Miura, Chem. Eur. J. 2020, 26,

8725.

(a) K. Müller, C. Faeh, F. Diederich, Science 2007, 317,

1881. (b) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J.

Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58,

8315.

(a) I. Ojima, J. C. Slater, Chirality 1997, 9, 487. (b) G.

59.

60.

61.

Bringmann, D. Feineis, R. Brueckner, M. Blank, K.

Peters, E. M. Peters, H. Reichmann, B. Janetzky, C. Grote,

H. W. Clement, W. Wesemann, Bioorg. Med. Chem. 2000,

8, 1467. (c) W. C. Black, C. I. Bayly, D. E. Davis, S.

Desmarais, J.-P. Falgueyret, S. Leger, C. S. Li, F. Masse,

D. J. McKay, J. T. Palmer, M. D. Percival, J. Robichaud,

N. Tsou, R. Zamboni, Bioorg. Med. Chem. Lett. 2005,

15, 4741. (d) L. J. Holsinger, K. Elrod, J. O. Link, M.

Graupe, I. J. Kim, WO-2009/055467 A2, 2009. (e) B. W.

Trotter, K. K. Nanda, C. S. Burgey, C. M. Potteiger, J. Z.

Deng, A. I. Green, J. C. Hartnett, N. R. Kett, Z. Wub, D.

A. Henze, K. Della Penna, R. Desai, M. D. Leitl, W.

Lemaire, R. B. White, S. Yeh, M. O. Urban, S. A. Kane,

G. D. Hartman, M. T. Bilodeau, Bioorg. Med. Chem. Lett.

2011, 21, 2354.

T. Takata, K. Hirano, M. Miura, Org. Lett. 2019, 21,

4284.

For

related

Cu-catalyzed

CF3-compatible

functionalizations of 1-trifluoromethylalkenes, see: (a) P.

H. S. Paioti, J. del Pozo, M. S. Mikus, J. Lee, M. J. Koh,

F. Romiti, S. Torker, A. H. Hoveyda, J. Am. Chem. Soc.

2019, 141, 19917. (b) Y. Kojima, M. Miura, K. Hirano,

ACS Catal. 2021, 11, 11663. (c) Y. Kojima, Y. Nishii, K.

Hirano, Org. Lett. 2022, 24, 7450.

(a) Y. Unoh, K. Hirano, M. Miura, J. Am. Chem. Soc.

2017, 139, 6106. (b) K. Nishimura, Y. Unoh, K. Hirano,

M. Miura, Chem. Eur. J. 2018, 24, 13089. (c) K.

Nishimura, K. Hirano, M. Miura, Org. Lett. 2019, 21,

1467. (d) K. Nishimura, K. Hirano, M. Miura, Org. Lett.

2020, 22, 3185.

Graphical Abstract

<Title> Copper-catalyzed Electrophilic Amination: An Umpolung Strategy for New C–N Bond Formations

C–H Amination

<Authors' names> Koji Hirano

δ+

C–B/Si Amination

<Summary> δ–

NX highly chemo- and stereoselective C–N bond forming reactions have been developed.

NH

Nitrogen-umpolung-enabled,

copper-catalyzed

By taking advantage of electrophilic amines, otherwise challenging halogen-compatible amination of organoboron, organosilicon,

and related compounds is achieved. Moreover, the catalytic regio- and enantioselective aminoboration/hydroamination of various

alkenes are also realized.

Cu

Aminoboration

Hydroamination

<Diagram>

C–H Amination

δ–

NH

δ+

NX

Cu

C–B/Si Amination

Aminoboration

Hydroamination

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る