リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Photo-on-Demand In Situ Phosgenation Reactions That Cross Three Phases of a Heterogeneous Solution of Chloroform and Aqueous NaOH」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Photo-on-Demand In Situ Phosgenation Reactions That Cross Three Phases of a Heterogeneous Solution of Chloroform and Aqueous NaOH

Tsuda, Akihiko Ozawa, Naoko Muranaka, Ryo Kuwahara, Tomoya Matsune, Ayako Liang, Fengying 神戸大学

2023.07.18

概要

Here, we report a novel photo-on-demand in situ phosgenation reaction that crosses three phases of a heterogeneous solution of chloroform (CHCl₃) and aqueous NaOH containing an aryl alcohol or amine. This reaction system enables the safe, convenient, and inexpensive synthesis of carbonate esters, polycarbonates, and N-substituted ureas from aryl alcohols, aryl diols, and primary/secondary amines, respectively, on a practical scale and with good yield. The photochemical oxidation of CHCl₃ to phosgene (COCl₂) occurs upon irradiation with UV light from a low-pressure mercury lamp of both the gas and liquid phases of the reaction system under O₂ bubbling of the vigorously stirred sample solution. The following reaction mechanisms are suggested: The aryl alcohol reacts in situ with the generated COCl₂ at the interfaces of the organic/aqueous phases and aqueous/gas phases, in competition with the decomposition of COCl₂ due to hydrolysis. Nucleophilicity and hydrophilicity are enhanced by the formation of aryl alkoxide ion through the reaction with NaOH, whereas the reaction of amine proceeds through neutralization of the generated HCl by the aqueous NaOH.

この論文で使われている画像

参考文献

(1) (a) Babad, H.; Zeiler, A.G. The Chemistry of Phosgene. Chem.

AUTHOR INFORMATION

Rev. 1973, 73, 75- 91. (b) Cotarca, L.; Eckert, H. Phosgenations-A

Handbook; Wiley-VCH: Weinheim, 2003.

(2) (a) Saunders, J. H.; Slocombe, R. J.; Hardy, E. E. The Vapor

Phase Reaction between Phosgene and Alcohols. J. Am. Chem. Soc.

1951, 73, 3796-3797. (b) Andraos, J. A Green Metrics Assessment of

Phosgene and Phosgene-Free Syntheses of Industrially Important

Commodity Chemicals. Pure Appl. Chem. 2011, 84, 827- 860.

(d) Shamai Yamin, T.; Prihed, H.; Weissberg, A. Challenges in the

Identifica tion Process of Phenidate Analogues in LC-ESI-MS/MS

Analysis: Information Enhancement by Derivatization with lsobutyl

Chloroformate. J. Mass Spectrom. 2019, 54, 266- 273.

Corresponding Author

Akihiko Tsuda - Department of Chemistry, Graduate School

of Science, Kobe University, Kobe 657-8501, Japan;

e orcid.org/ 0000-0002-9232-1455; Email: tsuda@

harbor.kobe-u.ac.jp

Authors

Naoko Ozawa - Department of Chemistry, Graduate School

of Science, Kobe University, Kobe 657-8501, Japan

27808

https://doi.org/1 0.1021 /acsomega.3c04290

ACS Omega 2023, 8, 27802-27810

at 2:17:01 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

ACS Omega

Downloaded via KOBE UNIV on 2023 8 17

http://pubs.acs.org/journal/acsodf

(3) (a) Corey, E. J.; Dawson, R. L. Metal-ion Sensitive Protecting

Groups in Synthesis. The Carbo-(8-quinoloxy) Substituent and its

Removal by Accelerated Hydrolysis. J. Am. Chem. Soc. 1962, 84,

4899-4904. (b) Zavradashvili, N.; Sarisozen, C.; Titvinidze, G.;

Otinashvili, G.; Kantaria, T.; Tugushi, D.; Puiggali, J.; Torchilin, V. P.;

Katsarava, R. Library of Cationic Polymers Composed of Polyamines

and Arginine as Gene Transfection Agents. ACS Omega 2019, 4,

2090-2101.

(4) (a) Turner, W. R.; Werbel, L. M. Novel bis [ l,6-dihydro-6,6dimethyl-1,3,5-triazine-2,4-diamines] as antitrypanosomal agents. J.

Med. Chem. 1985, 28, 1728-1740. (b) lzdebski, J.; Pawlak, D. A New

Convenient Method for the Synthesis of Symmetrical and Unsymmetrical N,N' -Disubstituted Ureas. Synthesis 1989, 21, 423-425.

(5) (a) Farthing, A. C.; Reynolds, R. J. W. Anhydro-N-Carboxy-DL/3-Phenylalanine. Nature 1950, 165, 647. (b) Gerlach, A.; Geller, T.

Scale-Up Studies for the Asymmetric Julia-Colonna Epoxidation

Reaction. Adv. Synth. Cata!. 2004, 346, 1247-1249.

(6) (a) He, X.-S.; Brossi, A. Dl-(2,2,2-Trichloroethyl)-Carbonate:

Byproduct in Reactions with 2,2,2-Trichloroethyl Chloroformate.

Synth. Commun. 1990, 20, 21 77-2179. (b) Bogolubsky, A. V.; Moroz,

Y. S.; Mykhailiuk, P. K.; Granat, D. S.; Pipko, S. E.; Konovets, A. I.;

Doroschuk, R.; Tolmachev, A. Bis(2,2,2-trifluoroethyl) Carbonate as

a Condensing Agent in One-Pot Parallel Synthesis of Unsymmetrical

Aliphatic Ureas. ACS Comb. Sci. 2014, 16, 303-308. (c) Bossion, A.;

Jones, G. O.; Taton, D.; Mecerreyes, D.; Hedrick, J. L.; Ong, Z. Y.;

Yang, Y. Y.; Sardon, H. Non-Isocyanate Polyurethane Soft Nanoparticles Obtained by Surfactant-Assisted lnterfacial Polymerization.

Langmuir 2017, 33, 1959-1968. (d) Sugiyama, M.; Akiyama, M.;

Nishiyama, K.; Okazoe, T.; Nozaki, K. Synthesis of Fluorinated

Dialkyl Carbonates from Carbon Dioxide as a Carbonyl Source.

ChemSusChem 2020, 13, 1775-1784.

(7) Fukuoka, S.; Fukawa, I.; Adachi, T .; Fujita, H.; Sugiyama, N.;

Sawa, T. Industrialization and Expansion of Green Sustainable

Chemical Process: A Review of Non-phosgene Polycarbonate from

CO 2 • Org. Process Res. Dev. 2019, 23, 145-169.

(8) (a) Fuse, S.; Tanabe, N.; Takahashi, T. Continuous in situ

Generation and Reaction of Phosgene in a Microflow System. Chem.

Commun. 2011, 47, 12661-12663. (b) Leroyer, L.; Prat, L.;

Cabassud, M.; Gourdon, C.; Denchy-Cabaret, O.; Barthes, M.;

Camus, P.; Hattou, S. Transposition of a Triphosgene-Based Process

for Pharmaceutical Development: from mg h- 1 to kg h- 1 of an

Unsymmetrical Urea. Green Process. Synth. 2013, 2, 239-250.

( c) Baumann, M.; Carcia, A. M. R.; Baxendal, I. R. Flow Synthesis

of Ethyl Isocyanoacetate Enabling the Telescoped Synthesis of 1,2,4Triazoles and Pyrrolo-[ 1,2-c]pyrimidines. Org. Biomol. Chem. 2015,

13, 4231-4239. (d) Yasukouchi, H .; Nishiyama, A.; Mitsuda, M. Safe

and Efficient Phosgenation Reactions in a Continuous Flow Reactor.

Org. Process Res. Dev. 2018, 22, 247-251.

(9) (a) Irie, K. Production of Phosgene. J. Fuel Soc. Jpn. 1960, 39,

575-583. (b) Kolb, K. E.; Kolb, D. Organic Chemicals from Carbon

Monoxide. J. Chem. Educ. 1983, 60, 57. (c) Gupta, N. K.; Peng, B.;

Haller, G. L.; Ember, E. E.; Lercher, J. A. Nitrogen Modified Carbon

Nano-Materials as Stable Catalysts for Phosgene Synthesis. ACS

Cata!. 2016, 6, 5843-5855. (d) Gupta, N. K.; Pashigreva, A.; Pidko,

E. A.; Hensen, E. J. M.; Mleczko, L.; Roggan, S.; Ember, E. E.;

Lercher, J. A. Bent Carbon Surface Moieties as Active Sites on Carbon

Catalysts for Phosgene Synthesis. Angew. Chem. 2016, 128, 17601764. (e) Bahr, A.; Moon, G.-H.; Diedenhoven, J.; Kiecherer, J.;

Barch, E.; Tiiysiiz, H. Reactor Design and Kinetic Study on

Adsorption/ Desorption of CO and Cl 2 for Industrial Phosgene

Synthesis. Chem. Ing. Tech. 2018, 90, 1513-1519.

(10) (a) Eckert, H.; Forster, B. Triphosgene, a Crystalline Phosgene

Substitute. Angew. Chem., Int. Ed. 1987, 26, 894-895. (b) Ganiu, M.

O.; Nepal, B.; Van Houten, J. P.; Kartika, R. A Decade Review of

Triphosgene and Its Applications in Organic Reactions. Tetrahedron

2020, 76, 131553-131576. (c) Cotarca, L.; Geller, T.; Repasi, J.

Bis(trichloromethyl)carbonate (BTC, Triphosgene): A Safer Alternative to Phosgene? Org. Process Res. Dev. 2017, 21 , 1439-1446.

(11) (a) Nakata, M. Overview on Polycarbonate. Kobunshi 1997, 46,

558-561. (b) Marks, M. J.; Munjal, S.; Namhata, S.; Scott, D. C.;

Bosscher, F.; De Letter, J. A.; Klumperman, B. Randomly Branched

Bisphenol A Polycarbonates. I. Molecular Weight Distribution

Modeling, lnterfacial Synthesis, and Characterization. J. Polym. Sci.,

Part A: Polym. Chem. 2000, 38, 560-570.

(12) Matsumoto, K.; Kiyoshige, K. Japanese Patent JP3195114.

2001.

( 13) (a) Tsuda, A. Japanese Patent JP5900920. 2016. (b) Kuwahara,

Y.; Zhang, A. L.; Soma, H.; Tsuda, A. Photochemical Molecular

Storage of Cli,, HCl, and COC12 : Synthesis of Organochlorine

Compounds, Salts, Ureas, and Polycarbonate with Photodecomposed

Chloroform. Org. Lett. 2012, 14, 3376-3379.

(14) For selected reviews on photo-on-demand phosgenation, see:

(a) Tsuda, A. Photo-on-Demand Synthesis of Carbonate Derivatives

with Chloroform. Koukagaku 2021, 52, 149-152. (b) Tsuda, A. In

Situ Photo-on-Demand Phosgenation Reactions with Chloroform for

the Synthesis of Polycarbonates and Polyurethanes. Polym. J. 2023, in

press DOI: 10.1038/s41428-023-00800-w.

(15) Kawakami, K.; Tsuda, A. Brominated Methanes as PhotoResponsive Molecular Storage of Elemental Br2• Chem. -Asian J. 2012,

7, 2240- 2252.

( 16) ( a) Tsuda, A. Japanese Patent JP6057449. 2016. (b) Liang, F.;

Yanai, M.; Suzuki, Y.; Tsuda, A. Photo-on-Demand Synthesis of

Chloroformates with a Chloroform Solution Containing an Alcohol

and Its One-Pot Conversion to Carbonates and Carbamates. Org. Lett.

2020, 22, 3566-3569.

(17) (a) Tsuda, A.; Okazoe, T.; Wada, A.; Mori, N .; Konishi, K.

Method for Preparing Vilsmeier Reagent. WIPO Patent WO2020/

050368Al, 2020. (b) Liang, F.; Eda, K.; Okazoe, T.; Wada, A.; Mori,

N .; Konishi, K.; Tsuda, A. Photo-on-Demand Synthesis of Vilsmeier

Reagents with Chloroform and Their Applications to One-Pot

Organic Syntheses. J. Org. Chem. 2021, 86, 6504-6517.

(18) (a) Tsuda, A. Carbonate Derivative Monomer Production

Method for Making Secondary Battery Electrolyte or Polycarbonate.

WIPO Patent WO211952Al, 2018. (b) Tsuda, A. Fluorinated

Carbonate Derivative Production Method. WIPO Patent

WO211953Al, 2018. ( c) Hashimoto, Y.; Hosokawa, S.; Liang, F.;

Suzuki, Y.; Dai, N.; Tana, G.; Eda, K.; Kakiuchi, T.; Okazoe, T.;

Harada, H .; Tsuda, A. Photo-on-Demand Base-Catalyzed Phosgenation Reactions with Chloroform: Synthesis of Arylcarbonate and

Halocarbonate Esters. J. Org. Chem. 2021, 86, 9811-9819.

(19) (a) Tsuda, A.; Okazoe, T. Method for Producing Isocyanate

Compounds. WIPO Patent WO100971Al, 2020. (b) Muranaka, R.;

Liu, Y.; Okada, I.; Okazoe, T.; Tsuda, A. Photo-on-Demand

Phosgenation Reactions with Chloroform for Selective Syntheses of

N-Substituted Ureas and Isocyanates. ACS Omega 2022, 7, 55845594.

(20) Sugimoto, T.; Kuwahara, T.; Liang, F.; Wang, H.; Tsuda, A.

Photo-On-Demand Synthesis of a-Amino Acid N-Carboxyanhydrides

with Chloroform. ACS Omega 2022, 7, 39250-39257.

(21) (a) Zhang, A.; Kuwahara, Y.; Hotta, Y.; Tsuda, A. Organic

Syntheses with Photochemically Generated Chemicals from Tetrachloroethylene. A sia n J. Org. Chem. 2013, 2, 572-578. (b) Akamatsu,

T.; Shele, M.; Matsune, A.; Kashiki, Y.; Liang, F.; Okazoe, T.; Tsuda,

A. Photo-on-Demand In Situ Synthesis of N-Substituted Trichloroacetamides with Tetrachloroethylene and Their Conversions to

Ureas, Carbamates, and Polyurethanes. ACS Omega 2023, 8, 26692684.

(22) (a) Baskerville, C.; Hamor, W. A. The Chemistry of

Anaesthetics, IV: Chloroform. Ind. Eng. Chem. 1912, 4, 362-372.

(b) Kawai, S. Discussion on Decomposition of Chloroform. Yakugaku

Zasshi 1966, 86, 1125-1132. (c) Riddick, J. A.; Bunger, W. B.

Techniques of Chemistry, Organic Solvents; Wiley: New York, 1970;

Vol. II, pp 771-773.

(23) (a) Ohkuma, S.; Sakai, I. Detection of Aromatic Primary

Amines by a Photochemical Reaction with Pyridine. Bunseki Kagaku

1975, 24, 385-387. (b) Errami, M .; Dib, G. E.; Cazaunau, M.; Roth,

E.; Salghi, R.; Mellouki, A.; Chakir, A. Atmospheric Degradation of

27809

https://doi.org/10.1021/acsomega.3c04290

ACS Omega 2023, 8, 27802-27810

at 2:17:01 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

ACS Omega

http://pubs.acs.org/journal/acsodf

Pyridine: UV Absorption Spectrum and Reaction with OH Radicals

and 0 3• Chem. Phys. Lett. 2016, 662, 141-145.

(24) (a) Tsuda, A.; Okazoe, T.; Harada, H. Method for Producing

Carbonyl Halide. WIPO Patent WO172744 Al, 2022. (b) Liu, Y.;

Okada, I.; Tsuda, A. Flow Photo-On-Demand Phosgenation

Reactions with Chloroform. Org. Process Res. Dev. 2022, 26, 33363344.

(25) (a) Chun, K. W.; Clinkscales, T. C.; Davison, R. R. VaporLiquid Equilibrium of Triethylamine-Water and MethyldiethylamineWater. J. Chem. Eng. Data 1971, 16, 443-446. (b) Philippe, R.;

Jambon, C.; Clechet, P. Thermodynamic Properties of Dimethylsulfox:ide + Halomethane Mixtures II. Vapour Pressures and Excess

Thermodynamic Functions. J. Chem. Thermodyn. 1973, 5, 431-444.

(26) (a) Russell, B. R.; Edwards, L. 0.; Raymonda, J. W. Vacuum

Ultraviolet Absorption Spectra of the Chloromethanes. J. Am. Chem.

Soc. 1973, 95, 2129-2133. (b) Ogita, T.; Hatta, H.; Kagiya, T.

Photoinduced Decomposition of Trihalomethanes in Aqueous

Solution by UV Irradiation. Nippon Kagaku Kaishi 1983, 11, 16641669.

(27) (a) Wynberg, H. The Reimer-Tiemann Reaction. Chem. Rev.

1960, 60, 169-184. (b) Hine, J.; van der Veen, J.M. The Mechanism

of the Reimer-Tiemann Reaction. J. Am. Chem. Soc. 1959, 81, 64466449.

(28) (a) von E Doering, W.; Hoffmann, A. K. The Addition of

Dichlorocarbene to Olefins. J. Am. Chem. Soc. 1954, 76, 6162-6165.

(b) Wang, M.-L.; Hsieh, Y.; Chang, R. Kinetics of Dichlorocyclopropanation Using 4-(Dimethyloctylammonium) Propansultan and 1,4Bis( triethylmethylammonium)benzene Dibromide as New Phase

Transfer Catalysts. React. Kinet. Cata/. Lett. 2004, 81, 49-56.

Downloaded via KOBE UNIV on 2023 8 17

27810

https://doi.org/10.1021/acsomega.3c04290

ACS Omega 2023, 8, 27802-27810

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る