リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of a two-field combining device "Field Stacker" for accurate monitoring observations at mid-infrared wavelengths」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of a two-field combining device "Field Stacker" for accurate monitoring observations at mid-infrared wavelengths

内山, 允史 東京大学 DOI:10.15083/0002001882

2021.10.04

概要

In standard theory, a giant collision called “Giant impact” is considered to occur at the final stage of the earth-like planet formation. However, it has not been clearly observed so far because it is a flash-like event in optical and near-infrared wavelengths. Mid-infrared is very useful for detecting the event. Cascade collisions followed by the Giant impact continuously supply small dust grains in the disk for over 100-1000 orbital periods. The grains shine very brightly at the mid-infrared wavelength, and thus the Giant impact can be observed as time variability of the mid-infrared flux. Actually, significant time variations of young stars in the mid-infrared wavelengths have been reported in recent papers (Melis et al. 2012, Meng et al. 2014 and 2015, and etc.). In order to increase a number of samples, we need to carry out monitoring survey for many objects at mid-infrared wavelengths. However current mid-infrared instruments on ground-based telescopes do not have su伍cient capability for monitoring observations.

We have developed an optical device “Field Stacker” for realizing the accurate monitoring from the ground. It is a device to combine two arbitrary fields of a wide telescope field of view (FoV) and carry out simultaneous observation of a science target and a reference star. This enables real time correction of atmospheric variations and improves the photometric accuracy. In this research, we set a monitoring accuracy of 2% as a goal of the development. This is five times higher than the accuracy empirically achieved by conventional mid-infrared instruments.

One important factor limiting the photometric accuracy is tilt errors of mirrors caused by moving stages of Field Stacker. Acceptable error of the misalignment of each pick-up mirror is estimated to be < 8.5 x 10-3 degree from a simple geometric calculation. The actual tilt error measured in the laboratory almost satisfied this requirement. The degradation of the photometric accuracy was estimated to be 1.1%.

Another factor to degrade the photometric accuracy is spatial difference in atmospheric transmittance. Field Stacker can fetch two fields with the distance of up to 25 arc-minutes which is about 10 times greater than the FoV of the conventional instruments. It is necessary to consider the difference of the transmittance in this spatial separation. We have estimated it based on mid-infrared data obtained by miniTAO/MAX38 assuming a simple model of the atmospheric structure. The estimated difference was 0.13% at 37 μm, and less than 0.1% at shorter wavelengths.

In order to evaluate on-sky performance of Field Stacker, we conducted engineering obser­vation in July 2018 on the Subaru telescope. Simultaneous observation of two bright stars, V 582 Cas and V 530 Cas, was performed at 11.6 μm for 16 minutes. Stellar images taken with Field Stacker almost achieved diffraction limited spatial resolution, and the images of two stars obtained at the same time showed very similar spatial patterns. It suggested that the wavefront error was almost similar for the both stars and may be caused in relatively lower layer of the atmosphere. Time series of the apparent fluxes of the stars showed significant variations. The peak to valley variation reached at 10% level of the photometric count. Those variations were synchronized very well and showed a negative correlation with background flux. It indicated that the variations were due to the fluctuation of the atmospheric trans­mittance. On the contrary, the ratio of the photometric counts did not show significant time variation, suggesting that the variation was effectively cancelled by Field Stacker. Standard deviation of the ratios was 1.7% of the averaged ratio. By stacking the images and reducing the photometric noise, the photometric accuracy improved to 0.9% with a 14 sec integration.

Another consideration is how wide area or how many objects can be observed with Field Stacker. To evaluate it, a number density of reference stars was examined based on all­sky infrared catalogues to estimate the availability of the Field Stacker. The estimated availabilities at 9 and 18 μm were 99.9% and 59.6%, respectively. This means that almost 100% AKARI S9W sources can be observed with Field Stacker in the N-band. In the Q-band, the observable objects are almost 60% of the AKARI L18W sources which are almost galactic sources.

参考文献

[1] Kokubo, E. and Ida, S., “Formation of Protoplanet Systems and Diversity of Planetary Systems,” ApJ 581, 666-680 (Dec. 2002).

[2] Genda, H., Kokubo, E., and Ida, S., “Merging Criteria for Giant Impacts of Protoplan­ets,” ApJ 744,137 (Jan. 2012).

[3] Cameron, A. G. W. and Ward, W. R., “The Origin of the Moon,” in [Lunar and Plan­etary Science Conference], Lunar and Planetary Science Conference 7 (Mar.1976).

[4] Canup, R. M., “A Giant Impact Origin of Pluto-Charon,” Science 307, 546-550 (Jan. 2005).

[5] Benz, W., Anic, A., Horner, J., and Whitby, J. A., “The Origin of Mercury,” Space Sci. Rev. 132, 189-202 (Oct. 2007).

[6] Brown, M. E., Barkume, K. M., Ragozzine, D., and Schaller, E. L., “A collisional family of icy objects in the Kuiper belt,” Nature 446, 294-296 (Mar. 2007).

[7] Miyazaki, S., Komiyama, Y., Nakaya, H., Kamata, Y., Doi, Y., Hamana, T., Karoji, H., Furusawa, H., Kawanomoto, S., Morokuma, T., Ishizuka, Y., Nariai, K., Tanaka, Y., Uraguchi, F., Utsumi, Y., Obuchi, Y., Okura, Y., Oguri, M., Takata, T., Tomono, D., Kurakami, T., Namikawa, K., Usuda, T., Yamanoi, H., Terai, T., Uekiyo, H., Yamada, Y., Koike, M., Aihara, H., Fujimori, Y., Mineo, S., Miyatake, H., Yasuda, N., Nishizawa, J., Saito, T., Tanaka, M., Uchida, T., Katayama, N., Wang, S.-Y., Chen, H.-Y., Lupton,R., Loomis, C., Bickerton, S., Price, P., Gunn, J., Suzuki, H., Miyazaki, Y., Muramatsu,M., Yamamoto, K., Endo, M., Ezaki, Y., Itoh, N., Miwa, Y., Yokota, H., Matsuda, T., Ebinuma, R., and Takeshi, K., “Hyper Suprime-Cam,” in [Ground-based and Airborne Instrumentation for Astronomy IV], Proc. SPIE 8446, 84460Z (Sept. 2012).

[8] Kenyon, S. J. and Bromley, B. C., “Detecting the Dusty Debris of Terrestrial Planet Formation,” ApJ 602, L133-L136 (Feb. 2004).

[9] Jackson, A. P. and Wyatt, M. C., “Debris from terrestrial planet formation: the Moon­forming collision,” MNRAS 425, 657-679 (Sept. 2012).

[10] Jackson, A. P., Wyatt, M. C., Bonsor, A., and Veras, D., “Debris froms giant impacts between planetary embryos at large orbital radii,” MNRAS 440, 3757-3777 (June 2014).

[11] Melis, C., Zuckerman, B., Rhee, J. H., Song, I., Murphy, S. J., and Bessell,M. S., “Rapid disappearance of a warm, dusty circumstellar disk,” Nature 487, 74-76 (July 2012).

[12] Meng, H. Y. A., Su, K. Y. L., Rieke, G. H., Stevenson, D. J., Plavchan, P., Rujopakarn, W., Lisse, C. M., Poshyachinda, S., and Reichart, D. E., “Large impacts around a solar­analog star in the era of terrestrial planet formation,” Science 345, 1032-1035 (Aug. 2014).

[13] Meng, H. Y. A., Su, K. Y. L., Rieke, G. H., Rujopakarn, W., Myers, G., Cook, M., Erdelyi, E., Maloney, C., McMath, J., Persha, G., Poshyachinda, S., and Reichart,D. E., “Planetary Collisions Outside the Solar System: Time Domain Characterization of Extreme Debris Disks,” ApJ 805, 77 (May 2015).

[14] Abraham, P., Juhasz, A., Dullemond, C. P., K6spal, A., van Boekel,R., Bouwman, J., Henning, T., Moor, A., Mosoni, L., Sicilia-Aguilar, A., and Sipos, N., “Episodic formation of cometary material in the outburst of a young Sun-like star,” Nature 459, 224-226 (May 2009).

[15] Juhasz, A., Dullemond, C. P., van Boekel,R., Bouwman, J., Abraham, P., Acosta- Pulido, J. A., Henning, T., Kaospaal, A., Sicilia-Aguilar, A., Jones, A., Moaor, A., Mosoni,L. , Regaly, Z., Szokoly, G., and Sipos, N., “The 2008 Outburst of EX Lup-Silicate Crystals in Motion,” ApJ 744,118 (Jan. 2012).

[16] Yoshii, Y., Aoki, T., Doi, M., Handa, T., Kawara, K., Kato, D., Kohno, K., Konishi,M. , Koshida, S., Minezaki, T., Mitani, N., Miyata, T., Motohara, K., Sako, S., Soyano, T., Tanabe, T., Tanaka, M., Tarusawa, K., Bronfman, L., Ruiz, M. T., and Hamuy, M., “The University of Tokyo Atacama Observatory 6.5m telescope project,” in [Ground­based and Airborne Telescopes III], Proc. SPIE 7733, 773308 (July 2010).

[17] Yoshii, Y., Doi, M., Kohno, K., Miyata, T., Motohara, K., Kawara, K., Tanaka, M., Minezaki, T., Sako, S., Morokuma, T., Tamura, Y., Tanabe, T., Takahashi, H., Konishi, M., Kamizuka, T., Koshida, S., Kato, N., Aoki, T., Soyano, T., Tarusawa, K., Handa, T., Bronfman, L., Ruiz, M. T., Hamuy, M., and Mendez, R., “Overview of University of Tokyo Atacama Observatory 6.5m telescope project,” in [Ground-based and AirborneTelescopes V], Proc. SPIE 9145, 914507 (July 2014).

[18] Yoshii, Y., Doi, M., Kohno, K., Miyata, T., Motohara, K., Kawara, K., Tanaka, M., Minezaki, T., Sako, S., Morokuma, T., Tamura, Y., Tanabe, T., Takahashi, H., Konishi,M., Kamizuka, T., Kato, N., Aoki, T., Soyano, T., Tarusawa, K., Handa, T., Koshida,S. , Bronfman, L., Ruiz, M. T., Hamuy, M., and Garay, G., “The University of TokyoAtacama Observatory 6.5m telescope: project overview and current status,” in [Ground­based and Airborne Telescopes VI], Proc. SPIE 9906, 99060R (July 2016).

[19] Doi, M., Yoshii, Y., Miyata, T., Kohno, K., Tanaka, M., Motohara, K., Minezaki,T. , Sako, S., Morokuma, T., Tanabe, T., Hatsukade, B., Takahashi, H., Konishi, M.,Kamizuka, T., Kato, N., Aoki, T., Soyano, T., Tarusawa, K., Handa, T., Koshida, S.,Bronfman, L., Ruiz, M. T., Hamuy, M., Mendez, R., and Garay, G., “Overview and construction status of the University of Tokyo Atacama Observatory 6.5m Telescope,” in [Ground-based and Airborne Telescopes VII], in this conference (2018).

[20] Konishi, M., Motohara, K., Tateuchi, K., Takahashi, H., Kitagawa, Y., Kato, N., Sako,S. , Uchimoto, Y. K., Toshikawa, K., Ohsawa, R., Yamamuro, T., Asano, K., Ita, Y., Kamizuka, T., Komugi, S., Koshida, S., Manabe, S., Matsunaga, N., Minezaki, T.,Morokuma, T., Nakashima, A., Takagi, T., Tanabe, T., Uchiyama, M., Aoki, T., Doi,M., Handa, T., Kato, D., Kawara, K., Kohno, K., Miyata, T., Nakamura, T., Okada, K.,Soyano, T., Tamura, Y., Tanaka, M., Tarusawa, K., and Yoshii, Y., “ANIR: Atacama near-infrared camera for the 1.0 m miniTAO telescope,” PASJ 67, 4 (Feb. 2015).

[21] Miyata, T., Sako, S., Nakamura, T., Asano, K., Uchiyama, M., Onaka, T., Sakon, I., Kataza, H., Ita, Y., Aoki, T., Doi, M., Handa, T., Kato, D., Kawara, K., Kohno, K., Konishi, M., Koshida, S., Minezaki, T., Mitani, N., Motohara, K., Soyano, T., Tanabe,T. , Tanaka, M., Tarusawa, K., and Yoshii, Y., “Development of a new mid-infrared in­strument for the TAO 6.5-m Telescope,” in [Ground-based and Airborne Instrumentation for Astronomy III], Proc. SPIE 7735, 77353P (July 2010).

[22] Kamizuka, T., Miyata, T., Sako, S., Nakamura, T., Asano, K., Uchiyama, M., Okada, K.,Onaka, T., Sakon, I., Kataza, H., Sarugaku, Y., Yoshii, Y., Doi, M., Kohno, K., Kawara,K., Tanaka, M., Motohara, K., Tanabe, T., Minezaki, T., Morokuma, T., Tamura, Y., Aoki, T., Soyano, T., Tarusawa, K., Kato, N., Konishi, M., Takahashi, H., Koshida, S., Tateuchi, K., and Handa, T., “Development of MIMIZUKU: a mid-infrared multi-field imager for 6.5-m TAO telescope,” in [Ground-based and Airborne Instrumentation for Astronomy IV], Proc. SPIE 8446, 84466P (Sept. 2012).

[23] Kamizuka, T., Miyata, T., Sako, S., Ohsawa, R., Asano, K., Uchiyama, M., Okada, K., Uchiyama, M., Nakamura, T., Sakon, I., Onaka, T., Kataza, H., Aoki, T., Doi, M., Kato, N. M., Kawara, K., Kitagawa, Y., Kohno, K., Konishi, M., Koshida, S., Minezaki,T., Morokuma, T., Motohara, K., Soyano, T., Takahashi, H., Tamura, Y., Tanabe, T., Tanaka, M., Tarusawa, K., Tateuchi, K., Todo, S., andYoshii, Y., “Revised specifications and current development status of MIMIZUKU: the mid-infrared instrument for the TAO 6.5-m telescope,” in [Ground-based and Airborne Instrumentation for AstronomyV], Proc. SPIE 9147, 91473C (July 2014).

[24] Kamizuka, T., Miyata, T., Sako, S., Ohsawa, R., Okada, K., Uchiyama, M. S., Mori, K., Yamaguchi, J., Asano, K., Uchiyama, M., Sakon, I., Onaka, T., Kataza, H., Hasegawa,S., Usui, F., Takato, N., Aoki, T., Doi, M., Kato, N. M., Kitagawa, Y., Kobayakawa,Y., Kohno, K., Konishi, M., Minezaki, T., Morokuma, T., Motohara, K., Ohashi, H., Soyano, T., Takahashi, H., Tamura, Y., Tanabee, T., Tanaka, M., Tarusawa, K., Terao,Y., and Yoshii, Y., “Development status of the mid-infrared two-field camera and spec­trograph MIMIZUKU for the TAO 6.5-m Telescope,” in [Ground-based and Airborne Instrumentation for Astronomy VI], Proc. SPIE 9908, 99083W (Aug. 2016).

[25] Kamizuka, T., Uchiyama, M. S., Yamaguchi, J., Mori, T., Ohsawa, R., Yoshida, Y., Sako, S., Miyata, T., Asano, K., Uchiyama, M., Sakon, I., Onaka, T., Kataza, H., Aoki, T., Doi, M., Hatsukade, B., Kato, N., Kohno, K., Konishi, M., Minezaki, T., Morokuma, T., Motohara, K., Soyano, T., Takahashi, H., Tanabe, T., Tanaka, M., Tarusawa, K., Tamura, Y., Koshida, S., Terao, Y., Ohashi, H., Kono, Y., Kushibiki,K., and Yoshii, Y., “Laboratory performance evaluation of the mid-infrared camera and spectrograph MIMIZUKU for the TAO 6.5-m telescope,” in [Ground-based and Airborne Instrumentation for Astronomy VII], in this conference (2018).

[26] Kataza, H., Okamoto, Y., Takubo, S., Onaka, T., Sako, S., Nakamura, K., Miyata, T., and Yamashita, T., “COMICS: the cooled mid-infrared camera and spectrometer for the Subaru telescope,” in [Optical and IR Telescope Instrumentation and Detectors], Iye, M. and Moorwood, A. F., eds., Proc. SPIE 4008, 1144-1152 (Aug. 2000).

[27] Nakamura, T., Miyata, T., Sako, S., Onaka, T., Enya, K., Kataza, H., Takahashi, H., and Obuchi, Y., “Cold chopper system for mid-infrared instruments,” in [Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation], Proc. SPIE 7018, 70184H (July 2008).

[28] Uchiyama, M., Miyata, T., Sako, S., Kamizuka, T., Nakamura, T., Asano, K., Okada, K., Onaka, T., Sakon, I., Kataza, H., Sarugaku, Y., Kirino, O., Nakagawa, H., Okada,N., and Mitsui, K., “Restraint deformation and corrosion protection of gold deposited aluminum mirrors for cold optics of mid-infrared instruments,” in [Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation], Proc. SPIE 9151, 915143 (July 2014).

[29] Uchiyama, M. S., Miyata, T., Kamizuka, T., Sako, S., Ohsawa, R., Okada, K., Mori, K., Yamaguchi, J., Asano, K., and Uchiyama, M., “Development of an optical device (Field Stacker) for achieving accurate photometry in ground-based mid-infrared observations,” in [Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II], Proc. SPIE 9912, 99125N (July 2016).

[30] Miyata, T., Sako, S., Nakamura, T., Onaka, T., and Kataza, H., “A new mid-infrared camera for ground-based 30 micron observations: MAX38,” in [Ground-based and Air­borne Instrumentation for Astronomy II], Proc. SPIE 7014, 701428 (July 2008).

[31] Sako, S., Aoki, T., Doi, M., Handa, T., Kawara, K., Kohno, K., Minezaki, T., Mitani, N., Miyata, T., Motohara, K., Soyano, T., Tanabe, T., Tanaka, M., Tarusawa, K., Yoshii, Y., Bronfman, L., and Ruiz, M. T., “The University of Tokyo Atacama 1.0-m telescope,” in [Ground-based and Airborne Telescopes II], Proc. SPIE 7012, 70122T (July 2008).

[32] Lord, S. D., “A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation,” tech. rep., NASA Technical Memorandum 103957 (Dec. 1992).

[33] Ishihara, D., Onaka, T., Kataza, H., Salama, A., Alfageme, C., Cassatella, A., Cox,N., Garcia-Lario, P., Stephenson, C., Cohen, M., Fujishiro, N., Fujiwara, H., Hasegawa,S. , Ita, Y., Kim, W., Matsuhara, H., Murakami, H., MUller, T. G., Nakagawa, T., Ohyama, Y., Oyabu, S., Pyo, J., Sakon, I., Shibai, H., Takita, S., Tanabe, T., Uemizu, K., Ueno, M., Usui, F., Wada, T., Watarai, H., Yamamura, I., and Yamauchi, C., “The AKARI/IRC mid-infrared all-sky survey,” A&A 514, A1(May 2010).

[34] Samus', N. N., Kazarovets, E. V., Durlevich, O. V., Kireeva, N. N., and Pastukhova,E. N., “General catalogue of variable stars: Version GCVS 5.1,” Astronomy Reports 61, 80-88 (Jan. 2017).

[35] Yoon, D.-H., Cho, S.-H., Kim, J., Yun, Y. j., and Park, Y.-S., “SiO and H2O Maser Survey toward Post-asymptotic Giant Branch and Asymptotic Giant Branch Stars,” ApJS 211,15 (Mar. 2014).

[36] Kerschbaum, F. and Olofsson, H., “Oxygen-rich semiregular and irregular variables. A catalogue of circumstellar CO observations,” A&AS 138, 299-322 (Aug.1999).

[37] Neugebauer, G., Habing, H. J., van Duinen, R., Aumann, H. H., Baud, B., Beichman, C. A., Beintema, D. A., Boggess, N., Clegg, P. E., de Jong, T., Emerson, J. P., Gautier,T. N., Gillett, F. C., Harris, S., Hauser, M. G., Houck, J. R., Jennings, R. E., Low,F. J., Marsden, P. L., Miley, G., Olnon, F. M., Pottasch, S. R., Raimond, E., Rowan- Robinson, M., Soifer, B. T., Walker, R. G., Wesselius, P. R., and Young, E., “The Infrared Astronomical Satellite (IRAS) mission,” ApJ 278, L1-L6 (Mar. 1984).

[38] Cutri, R. M., Wright, E. L., Conrow, T., Bauer, J., Benford, D., Brandenburg, H., Dailey, J., Eisenhardt, P. R. M., Evans, T., Fajardo-Acosta, S., Fowler, J., Gelino,C. , Grillmair, C., Harbut, M., Hoffman, D., Jarrett, T., Kirkpatrick, J. D., Leisawitz,D. , Liu, W., Mainzer, A., Marsh, K., Masci, F., McCallon, H., Padgett, D., Ressler,M. E., Royer, D., Skrutskie, M. F., Stanford, S. A., Wyatt, P. L., Tholen, D., Tsai,C. W., Wachter, S., Wheelock, S. L., Yan, L., Alles, R., Beck, R., Grav, T., Masiero, J., McCollum, B., McGehee, P., Papin, M., and Wittman, M., “Explanatory Supplement to the WISE All-Sky Data Release Products,” tech. rep., Explanatory Supplement to the WISE All-Sky Data Release Products (Mar. 2012).

[39] Cutri, R. M. and et al., “VizieR Online Data Catalog: WISE All-Sky Data Release (Cutri+ 2012),” VizieR Online Data Catalog 2311(2012).

[40] Skrutskie, M. F., Cutri, R. M., Stiening, R., Weinberg, M. D., Schneider, S., Carpenter, J. M., Beichman, C., Capps, R., Chester, T., Elias, J., Huchra, J., Liebert, J., Lonsdale, C., Monet, D. G., Price, S., Seitzer, P., Jarrett, T., Kirkpatrick, J. D., Gizis, J. E., Howard, E., Evans, T., Fowler, J., Fullmer, L., Hurt, R., Light, R., Kopan, E. L., Marsh, K. A., McCallon, H. L., Tam, R., Van Dyk, S., and Wheelock, S., “The Two Micron All Sky Survey (2MASS),” AJ 131, 1163-1183 (Feb. 2006).

[41] Perryman, M. A. C., Lindegren, L., Kovalevsky, J., Hoeg, E., Bastian, U., Bernacca, P. L., Creze, M., Donati, F., Grenon, M., Grewing, M., van Leeuwen, F., van der Marel,H. , Mignard, F., Murray, C. A., Le Poole, R. S., Schrijver, H., Turon, C., Arenou, F., Froeschle, M., and Petersen, C. S., “The HIPPARCOS Catalogue,” A&A 323, L49-L52 (July 1997).

[42] Cohen, M., Walker, R. G., Carter, B., Hammersley, P., Kidger, M., and Noguchi, K., “Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All­Sky Network of Absolutely Calibrated Stellar Spectra,” AJ 117, 1864-1889 (Apr. 1999).

[43] Ita, Y., Matsuura, M., Ishihara, D., Oyabu, S., Takita, S., Kataza, H., Yamamura,I. , Matsunaga, N., Tanabe, T., Nakada, Y., Fujiwara, H., Wada, T., Onaka, T., and Matsuhara, H., “AKARI's infrared view on nearby stars. Using AKARI infrared camera all-sky survey, 2MASS, and Hipparcos catalogs,” A&A 514, A2 (May 2010).

[44] Dobashi, K., Marshall, D. J., Shimoikura, T., and Bernard, J.-P., “Atlas and Catalog of Dark Clouds Based on the 2 Micron All Sky Survey. II. Correction of the Background Using the Besangon Galaxy Model,” PASJ 65, 31(Apr. 2013).

[45] Morlok, A., Mason, A. B., Anand, M., Lisse, C. M., Bullock, E. S., and Grady, M. M., “Dust from collisions: A way to probe the composition of exo-planets?,” Icarus 239, 1-14 (Sept. 2014).

[46] Fujiwara, H., Onaka, T., Yamashita, T., Ishihara, D., Kataza, H., Fukagawa, M., Takeda, Y., and Murakami, H., “Silica-rich Bright Debris Disk around HD 15407A,” ApJ 749, L29 (Apr. 2012).

[47] Fujiwara, H., Ishihara, D., Onaka, T., Takita, S., Kataza, H., Yamashita, T., Fukagawa, M., Ootsubo, T., Hirao, T., Enya, K., Marshall, J. P., White, G. J., Nakagawa, T., and Murakami, H., “AKARI/IRC 18 戸m survey of warm debris disks,” A&A 550, A45 (Feb. 2013).

[48] Lisse, C. M., Chen, C. H., Wyatt, M. C., Morlok, A., Song, I., Bryden, G., and Sheehan, P., “Abundant Circumstellar Silica Dust and SiO Gas Created by a Giant HypervelocityCollision in the ~12 Myr HD172555 System,” ApJ 701, 2019-2032 (Aug. 2009).

[49] Sargent, B., Forrest, W. J., D'Alessio, P., Li, A., Najita, J., Watson, D. M., Calvet, N., Furlan, E., Green, J. D., Kim, K. H., Sloan, G. C., Chen, C. H., Hartmann, L., and Houck, J. R., “Dust Processing in Disks around T Tauri Stars,” ApJ 645, 395-415 (July 2006).

[50] Sargent, B. A., Forrest, W. J., Tayrien, C., McClure, M. K., Li, A., Basu, A. R., Manoj, P., Watson, D. M., Bohac, C. J., Furlan, E., Kim, K. H., Green, J. D., and Sloan, G. C., “Silica in Protoplanetary Disks,” ApJ 690, 1193-1207 (Jan. 2009).

[51] Grigorieva, A., Artymowicz, P., and Thebault, P., “Collisional dust avalanches in debris discs,” A&A 461, 537-549 (Jan. 2007).

[52] Metzger, B. D., Rafikov, R. R., and Bochkarev, K. V., “Global models of runaway accretion in white dwarf debris discs,” MNRAS 423, 505-528 (June 2012).

[53] Andrews, S. M., “Observations of Solids in Protoplanetary Disks,” PASP 127, 961(Oct. 2015).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る